

### Hello Adopt-A-Stream Volunteers!

As always, thank you all for volunteering your time in 2017 to with our Adopt-A-Stream program. Both spring and fall this year had us battling the rain and high flows, which certainly can have an effect on both the bugs themselves as well as our monitoring efforts/efficiency. To help us better understand the health of our waters within the Clinton River Watershed, here is a summary of our 2017 monitoring results. In all, a total of 45 sites were monitored in 2017 between spring and fall. Thanks to all our teams and volunteers for assisting. Below are some photos from this year's monitoring.

When looking at scores from spring 2017 results, 37.2% of sites were classified as "Poor", 46.5% were classified as "Fair", and 16.3% were classified as "Good". As for fall 2017 results, 26.8% of sites were classified as "Poor", 43.9% were classified as "Fair", and 26.8% were classified as "Good". We did have one site that scored in the excellent range as well. Almost all subwatersheds had a variety of "Fair" and "Poor" sites. Most of the sites that were determined to be good were located within the Upper Clinton subwatershed. Most of these sites had an abundance of multiple macroinvertebrate families. The four most abundant macros found within the watershed in the fall monitoring were the Scud, Midge, net spinning Caddisfly and Damselfly (see below). Midge fall under group 3 or "tolerant" while the other three fall under group 2 or "somewhat sensitive". Overall, across the entire watershed most of our streams were categorized as "fair". The one site that scored in the excellent range was located in the Upper Clinton subwatershed in a preserve.

When looking at annual average scores compared over the last 3 years, roughly 42% of the sites are showing trends that indicate improvement. Meanwhile, 33% show little to no change, and 25% showed trends that indicate a decrease in scores.

• Four most abundant invertebrates collected throughout the watershed (In no particular order):



5

Midge Larvae (Chironomidae)



Caddisfly (Trichoptera)



Damselfly (Odonata)

To refresh your memories, after we collect the macroinvertebrates from the stream and identify them, we can then calculate a "Stream Quality Score" and rank the stream location (see Appendix A). The scores and classifications I refer to in the first two paragraphs can be seen on the graph below (Figure 1.). For site locations and ID, please refer to the next page (Table 1). I've included two maps as well one of the spring 2017 sites and one of the fall 2017 sites (Figure 2). For further historic data or questions please contact me at any time or take a look at the data for the previous years on our website: <u>http://www.crwc.org/programs/adoptastream/results/</u>.

Thanks Again

Scud (Amphipoda)

Matt Einheuser Watershed Ecologist Eric Diesing Environmental Scientist











# Table 1: Site ID and Locations for the 2017 monitoring locations (\* indicates sites only monitored once)

| Waterbody                 | Site ID  | Site location                                |
|---------------------------|----------|----------------------------------------------|
| Partridge creek           | CREW 12* | Behind Partridge creek mall                  |
| McBride Drain             | NB15     | Broughton in Macomb Twp                      |
| Gloede Drain              | CREW 10  | 21 Mile and Garfield                         |
| Sashabaw Creek            | UC3      | Pine knob rd W of Clintonville               |
| W.B. Stony Creek          | SP6      | Stony Creek on Lake George Road              |
| Stony Creek               | SP4      | 31 Mile / E. of Mt. Vernon                   |
| Paint Creek               | SP9      | Rochester Public Library                     |
| Clinton River             | NB1      | Wolcott Mill                                 |
| Paint Creek               | SP8      | King's Cove                                  |
| Cottrel Drain             | LSC4     | Jefferson and Donaldson                      |
| Beaver Creek              | RR9      | Beaver Creek Park                            |
| Gallagher Creek           | SP25     | Gallagher/Paint Creek                        |
| Clinton River             | UC1      | 6815 Dixie Hwy                               |
| Clinton River             | UC4      | United Methodist Church on Waldon Rd         |
| Avon Creek                | CM9      | Avon and Livernois                           |
| Plumbrook Drain           | RR11     | Fieldcrest Ln                                |
| Clinton River             | CREW5    | Waldenburg Park, 21 Mile east of Romeo Plank |
| Salt River                | AB1*     | New Haven                                    |
| Paint creek               | SP14     | Paint creek cider mill                       |
| Chrissman Drain           | RR6      | 18 1/2 mile and Hillview rd                  |
| Price Brook Drain         | CREW8    | 26 Mile and Haves                            |
| Deer Lake Inlet           | UC6      | Deerhill Dr                                  |
| Clinton river             | UC2      | Kimball Reserve                              |
| Clinton River             | CM5      | SW Corner of Avon and Livernois              |
| Galloway Creek            | CM4      | NW Corner of Perry and Giddings              |
| Kuku Creek                | CREW11   | Clinton Twp Arboretum                        |
| Clinton River             | CM6      | Yates Cider Mill                             |
| North Branch              | NB13     | Romeo Plank Rd between 32 and 31 Mile        |
| Galloway Creek            | CM10     | Oakland University Preserve                  |
| Nelson Drain              | RR3      | Dequindre and Hill Dr                        |
| Beaver Creek              | RR4      | Dequindre east of 15 Mile                    |
| Paint Creek               | SP2      | Children's Park                              |
| Stony Creek               | SP15     | Van Hoosen                                   |
| Clinton River             | CREW6    | Clinton River Park                           |
| Paint Creek               | SP3      | Clarkston and Kern                           |
| Paint Creek               | SP20     | Rochester Municipal Park                     |
| Paint Creek               | SP1      | Stanton and Newman Rds                       |
| Stony Creek (West branch) | SP5      | Park rd inside stony creek                   |
| East Coon Creek           | NB3      | Armada MS                                    |
| Clinton River             | UC5      | Elizabeth Lake Road Park                     |
| Stony Creek               | SP18     | Lakeville (Headwaters)                       |
| Clinton River             | CM11*    | Adams - Quail Ridge                          |
| Clinton River             | CM3*     | Riverside Park                               |
| Utica Drain               | CREW4*   | MCC campus                                   |
| East Pond Creek           | NB14*    | McVicer and 33 mi Rd                         |



# Figure 1. Bar graph of Stream Quality scores (based on Adopt-A-Stream volunteer macroinvertebrate samples) for spring and fall 2017.

Figure 2: Maps of the Watershed showing all spring and fall 2017 AAS sites and the stream quality at those locations based on the 2017 AAS scores



#### **APPENDIX A: Macroinvertebrate Data Form**

Site ID or Location: \_\_\_\_\_

Date: \_\_\_\_\_

# **Identification and Enumeration**

Use the codes "R" (rare) = 1-10, or "C" (common) = 11 or more when recording the number of individuals in each taxonomic group.

# Group 1: Sensitive

| c created by MiCorps, www.micorps.net)<br>p 1<br># of R's * 5.0 =<br># of C's * 5.3 =<br>Group 1 Total =<br>p 2<br># of R's * 3.0 =<br># of C's * 3.2 =<br>Group 2 Total =<br>p 3<br># of P's * 1.1 = |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| up 1<br># of R's * 5.0 =<br># of C's * 5.3 =<br>Group 1 Total =<br># of R's * 3.0 =<br># of C's * 3.2 =<br>Group 2 Total =<br>up 3<br># of R's * 1.1 =                                                |
| <pre>ip 1 _# of R's * 5.0 = # of C's * 5.3 = Group 1 Total =  p 2 _# of R's * 3.0 = # of C's * 3.2 = Group 2 Total = </pre>                                                                           |
| <pre># of R's * 5.0 =<br/># of C's * 5.3 =<br/>Group 1 Total =<br/># of R's * 3.0 =<br/># of C's * 3.2 =<br/>Group 2 Total =</pre>                                                                    |
| # of C's * 5.3 =<br>Group 1 Total =<br># of R's * 3.0 =<br># of C's * 3.2 =<br>Group 2 Total =<br># of R's * 1.1 =                                                                                    |
| Group 1 Total =<br>p 2<br># of R's * 3.0 =<br># of C's * 3.2 =<br>Group 2 Total =<br>p 3<br># of R's * 1.1 =                                                                                          |
| up 2<br># of R's * 3.0 =<br># of C's * 3.2 =<br>Group 2 Total =<br>up 3<br># of R's * 1.1 =                                                                                                           |
| up 2<br># of R's * 3.0 =<br># of C's * 3.2 =<br>Group 2 Total =<br>up 3<br># of R's * 1.1 =                                                                                                           |
| # of R's * 3.0 =<br># of C's * 3.2 =<br>Group 2 Total =<br># of R's * 1.1 =                                                                                                                           |
| <br># of C's * 3.2 =<br>Group 2 Total =<br>up 3<br># of R's * 1.1 =                                                                                                                                   |
| Group 2 Total =                                                                                                                                                                                       |
| $p_{3} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$                                                                                                                                       |
| ip 3<br># of R's * 1 1 -                                                                                                                                                                              |
| μ 5<br># of R's * 1 1 –                                                                                                                                                                               |
| $\pi \Lambda \mathbf{B} \mathbf{C} + \mathbf{I} \mathbf{I} =$                                                                                                                                         |
|                                                                                                                                                                                                       |
| $\# \text{ of } C \text{ s } * 1.0 = \_\_\_$                                                                                                                                                          |
| Group 3 Total =                                                                                                                                                                                       |
| Stream Quality Score =                                                                                                                                                                                |
| of totals for aroups 1-3: round to nearest                                                                                                                                                            |
| le number)                                                                                                                                                                                            |
| ,                                                                                                                                                                                                     |
| Excellent (>48)                                                                                                                                                                                       |
| Good (34-48)                                                                                                                                                                                          |
| Fair (19-33)                                                                                                                                                                                          |
| Poor (<19)                                                                                                                                                                                            |
| a<br>m<br>ol                                                                                                                                                                                          |