The Lake St. Clair Direct Drainage Subwatershed
of Macomb and Wayne Counties

A LAKE ST. CLAIR WATERSHED MANAGEMENT PLAN
for improving water quality in Lake St. Clair and the Great Lakes
The Lake St. Clair Direct Drainage Subwatershed

of Macomb and Wayne Counties

A LAKE ST. CLAIR WATERSHED MANAGEMENT PLAN

for improving water quality in Lake St. Clair and the Great Lakes
# Table of Contents

**List of Figures / Tables / Sidebars**

**Acknowledgements**

**Organization of the Plan**

**Executive Summary**

## 1. Introduction

- Geographic Scope
- Watershed Science
- Current Approach to Control Water Pollution
- Water Pollution Control in Michigan and the U.S.
- Supported Plans and Programs
- Developing the Watershed Management Plan
- References

## 2. Inventory of the Subwatershed

- Introduction
- The Natural Environment
- The People and Infrastructure
- References

## 3. Documented Subwatershed Conditions

- Introduction
- Environmental Impacts of Human Activity
- Measuring Impacts: Water Quality Metrics
- Pollution Sources and Trends
- Water Chemistry Conditions – Hist. and Current
- Biological Conditions – Historical and Current
- Hydrologic Conditions – Historical and Current
- Current Data for Planning: Visual Assessment
- Analysis of Imperviousness
- Current Subwatershed Protection Practices
- Identified Waterbody Problems
- Interpretation of Subwatershed Conditions
- References

## 4. Community Outreach and Public Involvement

- Public Input Processes
- Presentations to Municipal Officials
- Public Education Plan
- Summary
- References

## 5. Problem Analysis and Stressor Summary

- Introduction
- Status of Water Quality
- Determining Significant Stressors
- Method for Quantifying Stressors & Est. Targets
- Sediment
- Phosphorus
- Pathogens
- Other Stressors
- References
6. Goals and Objectives

Introduction
Goals and Objectives
Decision-making Principles
Supported Plans
Epilogue
References

7. Watershed Protection

Introduction
Watershed Planning, Institutionalization, and Implementation
Public Education and Participation
Ordinances, Zoning, and Development Standards
Good Housekeeping and Pollution Prevention
Storm Water Management BMPs
Natural Features and Resources Management
Recreation Enhancement and Promotion
Monitoring
Summary
References

8. Implementation Roadmap

Introduction
Actions to Achieve Goals and Objectives
Action Details
Financial and Technical Assistance
Pollutant Load Reductions
Decision-making Principles & Prioritization Proc.
References

9. Evaluating and Revising the Plan

Introduction
Elements of Watershed Planning
Evaluation Procedure
Guidance for Revision of the WMP
References

10. Institutionalization of the WMP

Introduction
Structure
Legal Relationships
Funding
Implementation and Funding
References

A. Acronyms / Definition of Terms
B. NPDES Permit MIG619000
C. Stakeholder Contact Information
D. Public Involvement Summaries
E. Dissenting Viewpoints
List of Figures

1-1: Location of Lake St. Clair Direct Drainage Subwatershed
1-2: Subwatershed communities
1-3: Subwatershed drainage areas
1-4: Congressional districts
   U.S. Capital Building-Washington D.C.
   Michigan Capital Building-Lansing, Michigan
   Drainage Areas
   The Great Lake Basin
   A Meeting of the LSCW SWAG
1-5: Watershed management plan development
   Conducting the current conditions inventory
   An Example of a Critical Area for Phosphorus in the subwatershed-Residential Lawns
   An Example of a Critical Area for Sediment in the subwatershed-Urban Land Use
1-6: School districts in the subwatershed
   Subwatershed photo tour: St. Mark’s Church in St. Clair Shores
   Subwatershed photo tour: The Lake Sainte Clair Nature Sanctuary in St. Clair Shores
   The Physiographic Regions of Southeastern Michigan
2-1: Soil associations in the subwatershed
2-2: Elevation in the subwatershed
   Lake Shore in Grosse Pointe Park
2-3: Wetland locations and types in the subwatershed
   Riparian Corridor on a segment of the Cottrell Drain
   Riparian Corridor
   Stream Meanders
   Habitat Regions of the Eastern United States
   Yellow Perch
   Mayfly
   Wavy-rayed Lampmussel
   An example of Great Lakes Marsh in its Natural State
2-4: Natural Features
2-5: Population densities in the subwatershed
   Low Density Due to large lot waterfront estates
2-6: Median household incomes in the subwatershed
   Urban Neighborhood
   Lake Township
   Beech/Maple Forest
2-7: Land cover in the subwatershed circa 1830
   Emergent Marsh
   Multiple present day land uses: single family residential and transportation
2-8: Land use in the subwatershed – present day
   Institutional land use
2-9: Land use in the subwatershed – future (year 2030)
2-10: Land cover/use comparison
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-11: Schematic of a combined sewer system</td>
</tr>
<tr>
<td>Milk River RTF</td>
</tr>
<tr>
<td>Aerial view of the Milk River RTF</td>
</tr>
<tr>
<td>2-12: Sewer systems in the subwatershed</td>
</tr>
<tr>
<td>2-13: Waters under the jurisdiction of county-level government</td>
</tr>
<tr>
<td>Enclosure of an Open Channel Watercourse, 1966 – now the 10 Mile Drain</td>
</tr>
<tr>
<td>Storm Sewer Construction</td>
</tr>
<tr>
<td>Storm Sewer Catch Basin</td>
</tr>
<tr>
<td>Storm Sewer Outfall on the Cottrell Drain</td>
</tr>
<tr>
<td>2-14: Public and Private Water Supplies</td>
</tr>
<tr>
<td>Typical private well casing cap</td>
</tr>
<tr>
<td>2-15: Pollution control facilities / potential discharge points</td>
</tr>
<tr>
<td>Aerial view of the South Macomb Disposal Authority Transfer Station</td>
</tr>
<tr>
<td>2-16: Storage tank locations (above and below ground)</td>
</tr>
<tr>
<td>An underground storage tank site: gas station</td>
</tr>
<tr>
<td>Transportation Infrastructure: Jefferson Avenue in St. Clair Shores</td>
</tr>
<tr>
<td>2-17: Transportation Infrastructure</td>
</tr>
<tr>
<td>Miller Marina – St. Clair Shores</td>
</tr>
<tr>
<td>2-18: Historical/cultural sites in the subwatershed</td>
</tr>
<tr>
<td>Historic Site – Blossom Heath Inn</td>
</tr>
<tr>
<td>Kyte Monroe Park</td>
</tr>
<tr>
<td>Welsh Park</td>
</tr>
<tr>
<td>2-19: Nature areas / parks</td>
</tr>
<tr>
<td>3-1: Effects of urbanization on runoff</td>
</tr>
<tr>
<td>Rooftops, Roads, and Parking Lots – downtown St. Clair Shores</td>
</tr>
<tr>
<td>Lake St. Clair – Pier Park Beach and nearby shore, Grosse Pointe Farms</td>
</tr>
<tr>
<td>Example of a Concrete Shore</td>
</tr>
<tr>
<td>Jefferson Ave. Bridge – Milk River, St. Clair Shores</td>
</tr>
<tr>
<td>The Wing-Stemmed Monkey Flower-once found in the subwatershed</td>
</tr>
<tr>
<td>3-2: Biological study locations and summarized data</td>
</tr>
<tr>
<td>Purple Loosestrife</td>
</tr>
<tr>
<td>Eurasian Water-milfoil</td>
</tr>
<tr>
<td>Spiny Water Flea</td>
</tr>
<tr>
<td>Zebra Mussel</td>
</tr>
<tr>
<td>3-3: Floodplains</td>
</tr>
<tr>
<td>3-4: Survey Locations</td>
</tr>
<tr>
<td>Milk River at Jefferson Road</td>
</tr>
<tr>
<td>Tebo Creek at Harper Road</td>
</tr>
<tr>
<td>Cottrell Drain at Cottrell Road</td>
</tr>
<tr>
<td>Roseville – Clinton Drain at 13 Mile Road</td>
</tr>
<tr>
<td>3-5: Identified problems</td>
</tr>
<tr>
<td>Roseville – Clinton Drain at Little Mack Road</td>
</tr>
<tr>
<td>Impacted Buffer along Cottrell Drain</td>
</tr>
<tr>
<td>Armored Banks near Outfall on Cottrell Drain</td>
</tr>
<tr>
<td>Shoreline Conditions-a location in the Grosse Pointe Catchment</td>
</tr>
<tr>
<td>3-6: Streambank conditions in the subwatershed</td>
</tr>
<tr>
<td>3-6: Streambank conditions in the subwatershed (continued)</td>
</tr>
</tbody>
</table>
Typical House in the Shorewood Street / Jefferson Avenue Neighborhood in St. Clair Shores

Deteriorating Conditions on Culver Street between Little Mack Avenue and Stephens St

Windmill Pointe Park and Marina in Grosse Pointe Park

Impervious Surfaces – Groesbeck Highway near N. Common Road

3-7: Impervious cover based on land use type
Various levels of imperviousness in Harper Woods

3-8: Relationship between impervious cover and stream quality

Satellite imagery of a portion of St. Clair Shores

3-9: Location of listed waterbodies
Memorial Beach

SWAG Meeting
Stakeholder Workshop
Stakeholder Workshop
Community Forum
Community Forum #2

CRWC Website: Utilized for Draft Plan Distribution and Receiving Public Comments
Stakeholder Workshop #2
CRWC Display at Home and Garden Show – Detroit, MI
An Example of Public Education Materials Developed by SEMCOG

5-1: Location of water quality monitoring stations

5-2: Estimated sediment load by source and catchment

5-3: Estimated phosphorus load by source and catchment

The Beach at Memorial Park: Goal III Aims to Promote This and Other Opportunities

The Cottrell Drain: A Potential Area in Need of Habitat Restoration

A Subwatershed Advisory Group Meeting: Continued Meetings and Action (Goal VI, Objective B) is a Key Making this Plan a Success

A Community Forum: Public Involvement and Education is a Tool that Can be Used to Address Many of the Goals and Objectives of this Plan

Subwatershed Photo Tour: The St. Clair Academy

7-1: Example of an Overlay Zone
The Marina at Windmill Park
Storm Sewer Outfall w/ Dry Weather Flow – possible illicit discharge
CRWC Stream Leaders
CRWC Adopt-A-Stream

7-2: MDEQ monitoring basins for Basin Year 2
MDEQ Basin Years 1, 3, 4 & 5
Unified Stream Assessment
Subwatershed Photo Tour: Grosse Pointe Farms Water Filtration Plant

8-1: General Schedule
8-2: Implementation milestones
Example of Public Education Materials
Watershed Sign

9-1: Relationship between the three elements
The Planning Process (detail) – see Chapter 1 for Expanded Information

9-2: Success levels
Field Data Collection for Developing the Plan: Unified Stream Assessment
SWAG Meeting
Example of a Program Implementation Activity: A Volunteer Assisting with Road-Stream Crossing Inventories
Example of a Past Capital Project: Straightened and Armored Banks of the Stephens Relief Drain
List of Tables

1-1: Subwatershed communities 1-2
1-2: Subwatershed drainage areas 1-3
1-3: Congressional districts by community 1-4
2-1: Climatic data for the subwatershed 2-1
2-2: Wetland coverage in the subwatershed 2-6
2-3: Natural features 2-12
2-4: Year 2000 community populations and densities 2-13
2-5: Community populations for 1970, 2000, and 2030 2-15
2-6: Subwatershed community populations for 2000 presented on a catchment basis 2-15
2-7: Community income, poverty, and education levels 2-17
2-8: Land cover in the subwatershed circa 1830 2-18
2-9: Land use in the subwatershed – present day 2-21
2-10: Land use in the subwatershed – future (year 2030) 2-23
2-11: Sewage disposal in the subwatershed, by catchment 2-26
2-12: Transportation infrastructure, by catchment 2-32
2-13: Historical/cultural sites in the subwatershed, by catchment 2-34
2-14: Nature area / park summary 2-35
2-15: Largest nature areas / parks in the subwatershed 2-36
3-1: Water quality standards 3-5
3-2: Threatened or endangered species in the subwatershed 3-14
3-3: Detailed road-stream crossing survey results 3-21
3-4: Assumed percent impervious values 3-29
3-5: Impervious cover percentages 3-30
4-1: Results from feedback forms 4-6
5-1: Status of designated uses 5-2
5-2: General sources of sediment 5-8
5-3: TSS water quality monitoring data compared to target value 5-11
5-4: Estimated existing annual loads and associated reductions by catchment 5-11
5-5: Estimated annual TSS load and additional load to account for streambank erosion by catchment 5-12
5-6: Final estimated sediment load reduction needed by catchment 5-12
5-7: General sources of phosphorus 5-16
5-8: TP data used to estimate current and allowable loads 5-19
5-9: Estimated existing annual TP loads and associated reductions by catchment 5-19
5-10: Estimated annual TP load and additional load to account for streambank erosion by catchment 5-20
5-11: Final estimated phosphorus load reduction needed by catchment 5-20
5-12: E. coli data used to estimate current and target loads 5-26
5-13: Contaminated sediments – sources and causes 5-29
5-14: PCBs – sources and causes 5-30
  Goal I – Objectives 6-1
  Goal II – Objectives 6-2
  Goal III – Objectives 6-2
  Goal IV – Objectives 6-3
  Goal V – Objectives 6-3
  Goal VI – Objectives 6-3
6-1: Relationship of WMP goals to RAP BUIs 6-5
6-2: Relationship of WMP goals to Lake St. Clair Comprehensive Management Plan
goals
8-1: Relationship of actions to goals and objectives
8-1: Relationship of actions to goals and objectives (continued)
8-2: Action details
8-2: Action details (rows continue across from previous page)
8-3: Potential funding/technical assistance
8-3: Potential funding/technical assistance (rows continue across from previous page)
8-4: Numerical cross-reference for previous table
8-4: Numerical cross-reference for previous table (continued)
8-5: Loading Reductions that result from addressing known sources
8-6: Phosphorus load reductions associated with the addressing of known sediment problems
9-1: Measures of success associated with the actions
9-1: Measures of success associated with the actions (continued)
9-2: Evaluation action details
9-3: Goals and objectives evaluation questions
9-3: Goals and objectives evaluation questions (continued)
9-3: Goals and objectives evaluation questions (continued)
10-1: Legal relationship options (continued on following page)
10-1: Legal relationship options (continuation from previous page)
10-2: Funding mechanisms (continued on following page)
10-2: Funding mechanisms (continuation from previous page)
10-3: Examples of actions and potential funding mechanisms
## List of Sidebars

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan Applicability</td>
<td>1-1</td>
</tr>
<tr>
<td>Quotable Quotation</td>
<td>1-1</td>
</tr>
<tr>
<td>Lake St. Clair Direct Drainage Subwatershed</td>
<td>1-2</td>
</tr>
<tr>
<td>Regulated Areas</td>
<td>1-2</td>
</tr>
<tr>
<td>Acronyms and Terms</td>
<td>1-2</td>
</tr>
<tr>
<td>Hydrologic Boundaries</td>
<td>1-3</td>
</tr>
<tr>
<td>Relationship to Clinton River Watershed</td>
<td>1-3</td>
</tr>
<tr>
<td>Municipality Names</td>
<td>1-3</td>
</tr>
<tr>
<td>Federal and State Level Representatives</td>
<td>1-4</td>
</tr>
<tr>
<td>State of Michigan Symbol of Water Quality</td>
<td>1-6</td>
</tr>
<tr>
<td>Additional WMP Elements</td>
<td>1-7</td>
</tr>
<tr>
<td>One Vision</td>
<td>1-7</td>
</tr>
<tr>
<td>Waters of the U.S.</td>
<td>1-7</td>
</tr>
<tr>
<td>Goals and Principles of the Clean Water Act</td>
<td>1-8</td>
</tr>
<tr>
<td>Special Laws / Programs</td>
<td>1-9</td>
</tr>
<tr>
<td>Special Laws / Programs (continued)</td>
<td>1-10</td>
</tr>
<tr>
<td>International Joint Commission</td>
<td>1-10</td>
</tr>
<tr>
<td>Clinton River Area of Concern Information</td>
<td>1-10</td>
</tr>
<tr>
<td>Lac Sainte Claire</td>
<td>1-11</td>
</tr>
<tr>
<td>Public Participation Process</td>
<td>1-13</td>
</tr>
<tr>
<td>Nested Jurisdictions</td>
<td>1-15</td>
</tr>
<tr>
<td>Data Sources</td>
<td>2-1</td>
</tr>
<tr>
<td>Effects of the Great Lakes</td>
<td>2-2</td>
</tr>
<tr>
<td>24-hour Storm Events</td>
<td>2-2</td>
</tr>
<tr>
<td>Average Annual Runoff</td>
<td>2-2</td>
</tr>
<tr>
<td>Soil Associations</td>
<td>2-3</td>
</tr>
<tr>
<td>Hydrologic Soil Groups</td>
<td>2-3</td>
</tr>
<tr>
<td>Hydrologic Soil Groups (continued)</td>
<td>2-4</td>
</tr>
<tr>
<td>Quotable Quotation</td>
<td>2-5</td>
</tr>
<tr>
<td>Primary Producers</td>
<td>2-5</td>
</tr>
<tr>
<td>Emergent Wetland Types / Forested Wetland Types</td>
<td>2-6</td>
</tr>
<tr>
<td>Bank Slope Processes</td>
<td>2-8</td>
</tr>
<tr>
<td>Tree Canopy</td>
<td>2-9</td>
</tr>
<tr>
<td>Fish Habitat</td>
<td>2-9</td>
</tr>
<tr>
<td>Neither Plant nor Animal</td>
<td>2-10</td>
</tr>
<tr>
<td>Zooplankton</td>
<td>2-10</td>
</tr>
<tr>
<td>Population Growth 2000 to 2005</td>
<td>2-13</td>
</tr>
<tr>
<td>Development Trends</td>
<td>2-14</td>
</tr>
<tr>
<td>Income Data</td>
<td>2-16</td>
</tr>
<tr>
<td>Minority Percent of Community Populations</td>
<td>2-17</td>
</tr>
<tr>
<td>Minority Percent of Catchment Populations</td>
<td>2-17</td>
</tr>
<tr>
<td>Land Use Types – Present</td>
<td>2-21</td>
</tr>
<tr>
<td>Developed Types</td>
<td>2-22</td>
</tr>
<tr>
<td>Future Land Use</td>
<td>2-22</td>
</tr>
<tr>
<td>Land Use Types – Future</td>
<td>2-22</td>
</tr>
<tr>
<td>Public Land</td>
<td>2-24</td>
</tr>
<tr>
<td>Sanitary Sewer Overflows</td>
<td>2-25</td>
</tr>
</tbody>
</table>
Aquatic Nuisance Species Task Force 7-28
Macroinvertebrates 7-31
U.S. EPA STORET 7-31
Water Quality Index 7-31
Other Resources 7-34
Quotable Quotation 8-1
Appropriateness of Actions 8-3
Terminology 8-3
Planning Levels 8-4
Benefits of the Actions 8-4
Importance of the Funding Program 8-5
Pollutant Sources 8-7
Potential Targets for Business Education 8-9
Recommended Implementation Approach 8-12
Solid Waste Management Plans 8-17
IDEP Hotline Numbers 8-19
Natural Features Information in the WMP 8-27
Recreation Consideration 8-29
Sources of the Actions 8-30
History of Actions Taken 8-31
Future Loadings 8-40
Stream Order 8-41
Adaptive Management 8-46
Quotable Quotations 9-1
Permit Requirements 9-3
Difficulty in Measuring Success 9-3
Notes on the Annual Reports 9-4
Characteristics of the Evaluation Measures 9-5
Actions Most Likely to have Quantifiable Load Reductions 9-6
Guideposts for Achieving Loading Reductions 9-9
Non-Action Milestones 9-15
Actions without Milestones 9-15
Goals and Objectives Evaluation – Phase II Related 9-15
Plans Developed in Conjunction with this WMP / Other Groups to Consider for SWAG Participation 10-2
Examples of Legal Entities Utilized Throughout Michigan for Watershed Protection and Contact Information 10-3
Legal Issues 10-6
Cool Cities Initiative 10-10
Acknowledgements

This watershed management plan (WMP) represents the joint effort of and hard work of many dedicated people, especially the members of the Subwatershed Advisory Group (SWAG) for the Lake St. Clair Direct Drainage Subwatershed (LSCW). There are many individuals and organizations who contributed their time, expertise, and resources during the development of this WMP. Their tireless efforts will greatly benefit future protection of Lake St. Clair for years to come. There is great appreciation for the time and efforts of all of the private citizens as well. The following individuals and organizations are recognized for their contributions:

- Anderson, Eckstein & Westrick, Inc.
  - Hala Baroudi
  - Missy Madigan
- Clinton River Watershed Council
  - Tracie Beasley
  - Gary Morgan
  - Jessica Opfer
- Eastpointe, City of
  - Greg Brown
  - D. Wayne O’Neal
- East Detroit Public Schools
  - Kerry Weishaup
- Environmental Consulting and Technology, Inc.
  - Olivia Olstyn
- Fishbeck, Thompson, Carr & Huber
  - Fred Cowles
- Grosse Pointe, City of
  - Frank Schulte
- Grosse Pointe Farms, City of
  - Scott Homminga
  - Rich Solak
  - Matthew Tepper
- Grosse Pointe Park
  - Dale Krajniak
  - Chris Riemel
- Grosse Pointe Woods, City of
  - Joe Ahee
  - Ted Bidigare
  - Joe Shock
- Grosse Pointe Shores, Village of
  - Brett Smith
- Hubbell, Roth & Clark
  - Margie Synk Kuhn
  - Robert Myllyoja
  - Bill Stone
  - Lori Tuchman
- Lake Shore Public Schools
  - Donald Kling
- Macomb County Health Department
  - Darren Maser
  - Cole Shoemaker
  - Jeffrey Trent
- Macomb County Planning and Economic Development
  - Gerard Santoro
  - John Crumm
- Macomb County Prosecuting Attorney
  - Andrea Jacklyn
- Macomb County Soil Conservation District
  - Steve Johnson
- Michigan Department of Environmental Quality
  - Chris Ethridge
In addition to the SWAG members, the Macomb County Public Works Office (MCPWO) its contractor, Tetra Tech, and the United States Army Corps of Engineers (USACE) were instrumental in preparing this document.

Lynne Seymour and Lara Sucharski from the MCPWO chaired the SWAG and provided direction for the planning efforts. Their dedication was critical in procuring funding for the project, providing a cohesive voice for the SWAG and its various members, and fostering communication between the myriad stakeholders involved.

The USACE provided financial support through the Remedial Action Plan (RAP) program. Dedicated staff members such as Collete Luff, Dick Smit, and Mike Geiger, provided logistical support, technical support, and worked diligently within the USACE to ensure the maximum amount of resources available to the project were utilized.

At Tetra Tech, the project was initiated under the supervision of Jim Scholl. Upon Jim’s departure, Dan Christian assumed all major project management responsibilities and was the main voice for Tetra Tech at SWAG meetings. Charlie MacPherson, Kevin Kratt, and Matt Rathsack provided additional management-level guidance and technical assistance.

Kyle Paulson was involved with the development of the workplan, the initial technical memos for the USACE, and the actual WMP document. His duties included coordinating the technical content of the plan, providing GIS support, drafting and laying out the documents, and editing the documents based on internal and external comments.

Kelly Dubay and Kathleen Herrmann were instrumental in planning and conducting the stakeholder meetings and community forums held during the development of the WMP. Kelly also contributed the majority of the Chapter 5 text, the technical content of which was developed by Elizabeth Hansen.

Steve Pennington, with assistance from Susan MacNeil, conducted the planning audit and developed the associated text presented in Chapter 3. Steve also performed a final overall check of the entire plan.

Other team members contributing to development of the WMP include: John Brian Rubel (technical review), Herrmann, Anne Thomas (Chapter 8), Natalie Trotter (GIS), Valerie Sanglier, Justin Voss, and Amanda Thelen.

All components of the WMP were reviewed and commented on extensively by members of the SWAG.
Organization of the Plan

This plan defines an approach that is to be taken to protect ecological, hydrological, and cultural resources of the subwatershed. It presents all of the data, analyses, public inputs, and conclusions used in developing the approach as well as components of the approach itself, including goals and objectives, actions to achieve the goals and objectives, plan evaluation and revision, and plan sustainability.

1. Introduction

This chapter introduces the reader to the subwatershed, describes its significance as portion of the Lake St. Clair Regional Sub-basin, and defines the drainage units, or catchments, that comprise the subwatershed and the municipal entities represented in it.

The chapter goes on to introduce the reader to some background information such as watershed science, water pollution control and its history, and other relevant plans that are supported by this watershed management plan (WMP).

Finally, the chapter discusses the partners that were involved in development of this WMP.

2. Inventory of the Subwatershed

This chapter walks the reader through the natural environment of the subwatershed, including coverage of each category in the watershed. A brief introduction to the hydrological processes, vegetation, habitat and wildlife provides the reader with a greater understanding of the valuable natural features.

The chapter goes on with details of the community profiles, population trends and statistics. Past, present and future land use data educates the reader about trends in development and infrastructure.

The chapter concludes with existing infrastructure and potential sources of pollution discharges.

3. Documented Subwatershed Conditions

This chapter begins with a discussion of the impacts on the environment caused by human activity and government defined water quality standards and indicators. An in-depth discussion of qualitative water chemistry conditions, biological conditions and hydrologic conditions supplies the reader with an overview of historic and current subwatershed conditions.

The chapter continues by providing the reader with results from road-stream crossing surveys, unified stream assessments and an analysis of impervious cover and the effect on stream quality.

There are several subwatershed protection practices already in place and are summarized for the reader. The chapter is closed out with a list of the existing waterbody impairments.
A vast amount of the information in this chapter provides a baseline for future chapters in this WMP and future planning efforts.

4. Community Outreach and Public Involvement

Chapter 4 begins with a discussion of the public involvement processes that were used to obtain input into the content of this WMP and comments on a draft version. This discussion includes details of the participants in the various mechanisms and lists the specific feedback received.

The chapter goes on to discuss the education that was done for benefit of the municipal officials and concludes with a detailing of the public education efforts that were conducted during development of and will continue after submittal of the WMP.

5. Problem Assessment and Stressor Summary

This chapter distills the information contained in Chapters 2, 3, and 4 into a number of significant stressors that impact water quality. It begins by listing the data sources, including a determination of the status of designated uses and a listing of general potential stressors.

The chapter then discusses the methodology employed to analyze the significant stressors and provides a section for each stressor that discusses topics associated with each: sources, impacts and impairment, indicators, water quality standards, load estimates and reduction goals, critical areas, monitoring progress, and improvement ideas.

The chapter finishes with a brief discussion of other known and suspected stressors in the subwatershed.

6. Goals and Objectives

This chapter defines the goals and objectives of the plan. First, the sources of information utilized in developing the goals and objectives (the information presented in the previous chapters) are detailed.

Then the goals are listed along with each of the objectives associated with them.

The chapter goes on to list the general decision-making principles that were used in distilling the goals and objectives.

The chapter ends with a reflection on how the goals of this WMP fit into goals of other WMPs that reflect larger management areas including the Clinton River Watershed, Southeast Michigan, and the entire Lake St. Clair Regional Sub-basin.
7. Watershed Protection

This chapter presents many tools and resources that are available to achieve the goals and objectives presented in the previous chapter. The tools are discussed in general groupings, in the following order: Watershed Planning, Institutionalization, and Implementation; Public Education and Participation; Ordinances, Zoning, and Development Standards; Good Housekeeping and Pollution Prevention; Storm Water Best Management Practices; Natural Features and Resources Management; Recreation Promotion and Enhancement; and Monitoring.

This chapter ends by introducing a methodology that will allow the implementing agencies to help select the most appropriate tools and resources.

8. Implementation Roadmap

This chapter details the roadmap that the implementing agencies will follow, utilizing the actions and resources presented in Chapter 7, to achieve the goals and objectives of the WMP (see Chapter 6). It details the steps that will be taken and includes: a textual description of each action, a table linking the actions to the appropriate goals and objectives, the lead implementing agency, a projected schedule, estimates of cost and time, financial and technical assistance needed, the authority related to each action, and Watershed-based Permit (NPDES Phase II) details such as SWPPI inclusion and level of commitment.

The chapter concludes with a discussion of how the actions will be implemented to achieve the loading reductions calculated and presented in Chapter 5.

9. Evaluation and Revision

Chapter 9 describes the iterative process of watershed planning and how evaluation and revision are an essential component of this.

The chapter also details potential evaluation mechanisms (or measures of success) and what options are available to assess them.

The bulk of the chapter lays out the evaluation and revision plan (ERP) for this WMP, including: measures of activity completion, measures of usage, and measures of change; monitoring protocols and existing monitoring programs; and the specific actions involved in the plan with details such as lead implementing agency, timeline/schedule, and estimates of cost and time.

The chapter goes on to list out all of the interim milestones used to track implementation of the WMP actions and concludes with a table of specific evaluation questions that may be used to gauge success in achieving each of the goals and objectives of this WMP.
10. Plan Institutionalization

Chapter 10 presents some organizational structures and legal relationships that the subwatershed entities will consider to ensure that the actions of the WMP are implemented and the goals and objectives of the WMP are met.

Finally, the chapter defines a number of potential funding mechanisms that may be utilized when implementing the actions defined in the WMP.

Appendices

The appendices include products generated during the WMP-development process (e.g. fact sheets) contact lists, and other information not essential to the text of the WMP but important for those requiring additional information on selected topics.

WMP as a Planning Document

This WMP is a planning document only and it is fully expected that ongoing modifications will be necessary to reflect actual resources obtained and available for its implementation. The Permittee’s individual SWPPI should be referenced to more clearly indicate commitments to programs and activities especially for those in multiple watersheds where the definitions of similar actions/activities is widely variable and the logistics of implementing so many variable activities are complex.

A Note about Photos

Photos with no reference have public domain usage rights.

WMP Contact Info:

The following individuals may be contacted with questions about this WMP:

Data
Kyle Paulson – Tetra Tech
(517) 394-0438
Kyle.paulson@TetraTech.com

Plan Errors
Lynne Seymour - Macomb County Public Works
(586) 307-8229
Lynne.seymour@macombcountymi.gov
Executive Summary

The Lake St. Clair Direct Drainage Subwatershed (LSCW), the focus of this watershed management plan (WMP), is a part of the larger Lake St. Clair Regional Sub-basin and extends along the Lake St. Clair shore from the Clinton River Spillway in Harrison Township to the outlet of Lake St. Clair into the Detroit River near the City of Grosse Pointe Park. The LSCW is a 41 square mile, Michigan Department of Environmental Quality (MDEQ)-approved basin that includes waterbodies, such as the Milk River, which directly enter Lake St. Clair. It is home to 214,000 people.

This WMP was developed by the LSCW Subwatershed Advisory Group (SWAG) to: 1) fulfill the National Pollutant Discharge Elimination System (NPDES) Phase II requirements (MDEQ’s General Permit No. MIG619000 for Coverage of Storm Water Discharges for Municipal Separate Storm Sewer Systems Subject to Watershed Plan Requirements) for non-Phase I governmental units in the urbanized area; and 2) make all of the entities represented in the subwatershed eligible for various grant funding opportunities to implement actions for watershed improvement.

The contents of this plan, including the goals and objectives and the actions to meet them, were developed cooperatively by SWAG members with consideration of the input from community leaders, residents, environmental and citizen groups, local businesses, schools, and universities. This WMP was also developed to be consistent with other planning efforts affecting the subwatershed, including: the Lake St. Clair Comprehensive Management Plan (U.S. Army Corps of Engineers), the Clinton River Watershed Remedial and Preventative Action Plan (Clinton River Public Advisory Council), and the Water Quality Management Plan for Southeast Michigan (Southeast Michigan Council of Governments).

In the 1830s, the subwatershed was primarily forest land (26 square miles) and swamp/wetland (15 sq. miles). Since that time, permanent human settlement has transformed almost all of this land into developed types such as residential, commercial, and industrial (41 square miles). Today, only 0.30 square miles of natural areas remain.

This past and continuing development has been and will continue to be a major factor that impacts the quality of water in the
This is because traditional development practices have dramatically increased impervious surfaces which subsequently increase runoff and pollutant transfer to nearby waterbodies. Other factors which have and continue to impact water quality in the subwatershed include: sewer systems and practices, riparian corridor and waterbody modifications, and point sources such as pollution control facilities.

The health of waterbodies in the subwatershed can be gauged from water quality standards (WQS), defined by the MDEQ, to: 1) protect health and public welfare, 2) enhance and maintain the quality of water, 3) protect the state’s natural resources, and 4) meet the requirements of state and federal law. The WQS contain requirements for designated uses that the waters of the state must meet, including:

- Agricultural Water Supply;
- Public Water Supply;
- Other Aquatic Life/Wildlife;
- Industrial Water Supply;
- Navigation;
- Warmwater Fishery;
- Coldwater Fishery (specifically identified water bodies only);
- Total Body Contact (May 1st through October 31st); and
- Partial Body Contact.

Water quality monitoring has been and continues to be conducted by various organizations and agencies. While some historical data exist, the bulk of monitoring began in the 1970s, spurred by the passage of the Clean Water Act and other environmental initiatives. Analysis of this data shows that there have been, and still are, severe impacts in the subwatershed, although improvements have been made in the last 30 years. Impairments, as listed by the MDEQ in 2006 include: Dissolved Oxygen, Pathogens, Fish Kills, and Phosphorus in the Milk River in Macomb County and a Fish Consumption Advisory for PCBs and Mercury in Fish Tissue in Lake St. Clair.

The subwatershed, as part of the Clinton River Area of Concern (because it includes the Lake St. Clair nearshore area impacted by the Clinton River or Clinton River Spillway), is affected by some beneficial use impairments that indicate other problems, including:

- Degradation of aesthetics;
- Beach closings and other “full body contact” restrictions;
- Degradation of benthos;
- Loss of fish/wildlife habitat;
- Restrictions on dredging activities;
- Eutrophication/undesirable algae populations;
- Degradation of fish/wildlife populations; and
- Restrictions on fish/wildlife consumption.

Detailed analysis of water quality data has led to the identification of three major stressors that impact the subwatershed. These stressors are: sediment, phosphorus, and pathogens. They have been treated to detailed analysis in the plan that includes discussion of: impacts, indicators, standards, load estimates and reduction goals, critical areas, monitoring,

**Phase II Permittees**

The Phase II Permittees covered by this plan are:

- Clinton Charter Township;
- Eastpointe, City of;
- Grosse Pointe, City of;
- Grosse Pointe Farms, City of;
- Grosse Pointe Park, City of;
- Grosse Pointe Shores, City of;
- Harrison Charter Township;
- Lake Township;
- Lakeview Public Schools;
- Macomb County;
- Roseville, City of;
- St. Clair Shores, City of; and
- Wayne County.

**Nested Jurisdictions**

The nested jurisdictions in the subwatershed are associated with county-level government (except where indicated) and include:

- East Detroit Public Schools*;
- Grosse Pointe Schools*;
- Lake Shore Public Schools; and
- Roseville Community Schools*.

* Some facilities within the jurisdiction may be exempt due to their location in a CSO service area.
and improvement ideas. The framework for discussion of these stressors makes the implementation of actions to improve their conditions potentially eligible for grant funding.

In addition to addressing the problems causing the waterbody impairments and beneficial use impairments, this WMP also seeks to address issues of public stakeholders. Various meetings were held during the planning process to allow the stakeholders to express their issues and concerns as well as their goals and visions for the subwatershed.

Consideration of the public input and the measurable water quality impairments led to the goals and objectives of the WMP, as well as the main principle:

“To improve and protect ecological, hydrological, and cultural resources of the Lake St. Clair Direct Drainage Subwatershed.”

Specifically, the goals of the WMP are:

I. Protect water quality and reduce pollution;
II. Provide and promote public education to raise awareness and change public behavior;
III. Protect and enhance sustainable recreational opportunities;
IV. Minimize local stakeholder impacts and restore and enhance fisheries, aquatic life, wildlife, and associated habitat;
V. Reduce the impact of runoff through effective stormwater management; and
VI. Seek out opportunities to sustain implementation of the plan.

Meeting the goals and objectives of the plan in an economically responsible way requires the implementation of numerous actions over many years. As presented in the plan, there are many actions that address the goals and objectives of the WMP and even more resources that provide assistance relative to these actions.

The planned actions have been grouped into the following eight categories:

- Watershed Planning, Institutionalization, and Implementation – includes funding, plan revision, and reporting actions;
- Public Education and Participation – includes community education, employee training, demonstration projects, signage, and meetings;
- Ordinances, Zoning, and Development Standards – includes stormwater standards, managing development, preserving natural features, and pollution prevention ordinances;
- Good Housekeeping and Pollution Prevention – includes sewer operations and maintenance, waste management, municipal property practices, and spill preventions and response;
- Stormwater Best Management Practices: Other Pollutant Load Reducing Controls – includes impervious surface mitigation, infiltration, filtration, vegetative buffers and conveyance, and retention / detention;

Plan Applicability

The advisory group recognizes the public desire to protect Lake St. Clair, its clean water, fish, wildlife, and habitat, recreational opportunities, and its role as an economic engine for the area. The goals, objectives, and actions in this plan apply only to the land comprising the LSCW, which is just a small percentage of the total area that drains to Lake St. Clair. However, these goals, objectives, and actions are consistent with the public’s aspirations and the Lake St. Clair Comprehensive Management Plan.
• Natural Features and Resources Management – includes identification, protection, and restoration of natural features; and
• Recreation Promotion and Enhancement – includes program coordination and opportunity enhancement (parks, boat launches, trails, fishing spots).

The actions in these categories have specific details, including: the lead agency, the schedule, cost estimates, technical and financial assistance, the authority related to the action, any clarifying comments, permit requirement commitments (where appropriate), and applicability to the major stressors affecting the subwatershed.

As with any plan that is part of an adaptive management scheme, this WMP contains procedures for its evaluation and revision. Evaluation measures fall into six levels:
1. Compliance with Activity-Based Permit Requirements;
2. Changes in Knowledge/Awareness;
3. Behavioral Change / BMP Implementation;
4. Load Reductions;
5. Changes in Discharge Quality; and

The evaluation measures in the six categories are also classified as: 1) a measure of activity completions (including milestones), 2) a measure of usage, or 3) a measure of change.

The data to drive the evaluations will come from various existing and additional volunteer programs. The assessment of the various measures (including checking achievement of goals and objectives) will drive the modifications and revisions to the WMP.

The implementation of the WMP (actions, evaluation, and revision) will be through the SWAG and its individual members. The SWAG will continue its current voluntary structure but will consider alternate organizational structures and funding mechanisms and will initiate them as appropriate for the most effective implementation.

Watershed planning is meant to be an iterative process that provides for continuous input and revision of procedures, processes, and products. It is a tool in a comprehensive and systematic approach to balancing land uses and human activities to meet mutually agreed upon social, economic, and environmental goals and objectives in a watershed.

This WMP is a living document and is meant to be used, revised, and altered to fit the changing needs of the subwatershed as new information becomes available and new priorities arise.
1. Introduction

Geographic Scope

The Lake St. Clair Direct Drainage Subwatershed (LSCW), shown in Figure 1-1, is a hydrologically-based, Michigan Department of Environmental Quality (MDEQ)-approved portion of the Lake Drainage Watershed (LDW) located in Southeast Michigan. The LDW, along with the Clinton River Watershed and the St. Clair River Watershed, comprise the U.S. portion of the Lake St. Clair Regional Sub-basin.

Figure 1-1. Location of Lake St. Clair Direct Drainage Subwatershed.

Plan Applicability

The advisory group recognizes the public desire to protect Lake St. Clair, its clean water, fish, wildlife, and habitat, recreational opportunities, and its role as an economic engine for the area. The goals, objectives, and actions in this plan apply only to the land comprising the LSCW, which is just a small percentage of the total area that drains to Lake St. Clair. However, these goals, objectives, and actions are consistent with the public’s aspirations and the Lake St. Clair Comprehensive Management Plan.

Quotable Quotation

“The significant problems we face cannot be solved at the same level of thinking we were at when they were created.”

- Albert Einstein

Communities

The LSCW includes all or part of six Macomb County communities and six Wayne County communities as shown in Figure 1-2. See Table 1-1 for characteristics of these communities.

Drainage Areas

The subwatershed covers approximately 41 square miles. Its general boundary was based on the topographically-derived United States Geological Survey (USGS) / Natural Resources Conservation Service (NRCS) classification system (see additional discussion later in chapter). The final boundary and the three drainage areas that comprise it were drawn considering man-altered drainage patterns. A map showing the drainage areas is presented in Figure 1-3.
Lake St. Clair Direct Drainage Subwatershed

The LSCW encompasses the western shore of Lake St. Clair from the Clinton River Spillway to the outlet of Lake St. Clair into the Detroit River. The majority of runoff from this area drains to Lake St. Clair directly through storm sewer pipes or drains. Portions of Roseville and St. Clair Shores drain indirectly to the lake through storm sewers and open-channel drains to the Clinton River Spillway. The Combined Sewer Overflow (CSO) area drains to the Detroit Water and Sewerage District’s Waste Water Treatment Plant unless excessive flow rates cause overflows to Lake St. Clair or the Milk River. A small portion of Roseville’s northwest corner drains to the Red Run Drain via Warren’s storm sewers.

Regulated Areas

The NPDES Phase II program, discussed later in the chapter, regulates all urbanized areas (as defined by the U.S. Census) operating a separate storm sewer system. This includes all areas of the subwatershed except for the portions of communities in the CSO area.

Acronyms and Terms

A complete list of acronyms and terms and their respective definitions can be found in Appendix A.

Table 1-1. Subwatershed communities.

<table>
<thead>
<tr>
<th>Community</th>
<th>Community Size (sq. miles)</th>
<th>Percent of Community in Subwatershed</th>
<th>Total Area in Subwatershed (sq. miles)</th>
<th>Storm Sewer Area (sq. miles)</th>
<th>CSO Area (sq. miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinton, Charter Township of</td>
<td>28.21</td>
<td>2.6%</td>
<td>0.72</td>
<td>0.72</td>
<td>---</td>
</tr>
<tr>
<td>Eastpointe, City of</td>
<td>5.04</td>
<td>100.0%</td>
<td>5.04</td>
<td>1.08</td>
<td>3.96</td>
</tr>
<tr>
<td>Grosse Pointe, City of</td>
<td>1.06</td>
<td>100.0%</td>
<td>1.06</td>
<td>0.64</td>
<td>0.42</td>
</tr>
<tr>
<td>Grosse Pointe Farms, City of</td>
<td>2.75</td>
<td>100.0%</td>
<td>2.75</td>
<td>1.49</td>
<td>1.26</td>
</tr>
<tr>
<td>Grosse Pointe Park, City of</td>
<td>2.18</td>
<td>100.0%</td>
<td>2.18</td>
<td>2.18</td>
<td>---</td>
</tr>
<tr>
<td>Grosse Pointe Shores, Village of</td>
<td>1.00</td>
<td>100.0%</td>
<td>1.00</td>
<td>0.60</td>
<td>0.40</td>
</tr>
<tr>
<td>Grosse Pointe Woods, City of</td>
<td>3.29</td>
<td>100.0%</td>
<td>3.29</td>
<td>---</td>
<td>3.29</td>
</tr>
<tr>
<td>Harper Woods, City of</td>
<td>2.62</td>
<td>100.0%</td>
<td>2.62</td>
<td>---</td>
<td>2.62</td>
</tr>
<tr>
<td>Harrison, Charter Township of</td>
<td>14.97</td>
<td>6.6%</td>
<td>9.99</td>
<td>0.99</td>
<td>---</td>
</tr>
<tr>
<td>Lake Township</td>
<td>0.17</td>
<td>100.0%</td>
<td>0.17</td>
<td>0.17</td>
<td>---</td>
</tr>
<tr>
<td>Roseville, City of</td>
<td>9.92</td>
<td>100.0%</td>
<td>9.92</td>
<td>9.16</td>
<td>0.76</td>
</tr>
<tr>
<td>St. Clair Shores, City of</td>
<td>11.52</td>
<td>100.0%</td>
<td>11.52</td>
<td>8.49</td>
<td>3.03</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>41.26</td>
<td>25.92</td>
<td>15.74</td>
</tr>
</tbody>
</table>

Hydrologic Boundaries
As depicted in Figure 1-3 the LSCW includes a small portion of land that drains to the Red Run.
The northern boundary of the subwatershed has been modified from the MDEQ provided boundary. The boundaries in the Charter Townships of Clinton and Harrison have been changed to be coincident with I-94 and the Clinton River Spillway (as shown in Figure 1-3).

Relationship to Clinton River Watershed
Throughout this plan, references to Clinton River-based information and resources will appear. The reasons for this are threefold:
- The proximity of the communities;
- Water quality in the Clinton River directly impacts the water quality of Lake St. Clair; and
- To leverage the extensive and ongoing planning in the Clinton River Watershed.

Municipality Names
The municipality names used in this chapter reflect actual legal names. In following chapters of the plan, the names have been truncated to more common variations. For example, the ‘Charter Township of Clinton’ is referred to as ‘Clinton Township’.

Table 1-2 presents a breakdown of the drainage areas with respect to the subwatershed and the communities.

Table 1-2. Subwatershed drainage areas.

<table>
<thead>
<tr>
<th>Drainage Area</th>
<th>Clinton, Charter Township of</th>
<th>Eastpointe, City of</th>
<th>Grosse Pointe, City of</th>
<th>Grosse Pointe Farms, City of</th>
<th>Grosse Pointe Park, City of</th>
<th>Grosse Pointe Shores, Village of</th>
<th>Harper Woods, City of</th>
<th>Harrison, Charter Township of</th>
<th>Lake Township</th>
<th>Roseville, City of</th>
<th>St. Clair Shores, City of</th>
<th>Total Area (square miles)</th>
<th>Percent of Subwatershed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>---</td>
<td>1.06</td>
<td>2.75</td>
<td>2.18</td>
<td>0.99</td>
<td>3.29</td>
<td>2.62</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>12.89</td>
<td>31.2%</td>
</tr>
<tr>
<td>Lake – North</td>
<td>0.72</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.99</td>
<td>7.83</td>
<td>5.42</td>
<td>14.96</td>
<td>13.41</td>
<td>32.5%</td>
</tr>
<tr>
<td>Lake – South</td>
<td>---</td>
<td>5.04</td>
<td>---</td>
<td>---</td>
<td>0.01</td>
<td>---</td>
<td>---</td>
<td>0.17</td>
<td>2.09</td>
<td>6.10</td>
<td>13.41</td>
<td>32.5%</td>
<td>---</td>
</tr>
<tr>
<td>Total (square miles)</td>
<td>0.72</td>
<td>5.04</td>
<td>1.06</td>
<td>2.75</td>
<td>2.18</td>
<td>1.00</td>
<td>3.29</td>
<td>2.62</td>
<td>0.99</td>
<td>0.17</td>
<td>9.92</td>
<td>11.52</td>
<td>41.26</td>
</tr>
<tr>
<td>Percent of Subwatershed</td>
<td>1.7%</td>
<td>12.2%</td>
<td>2.6%</td>
<td>6.7%</td>
<td>5.3%</td>
<td>2.4%</td>
<td>8.6%</td>
<td>6.3%</td>
<td>2.4%</td>
<td>0.4%</td>
<td>24.0%</td>
<td>27.9%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Copyright 2001 Macomb County, Michigan
Congressional Districts

The people of the subwatershed are represented in the United States House of Representatives through Michigan’s 10th, 12th, and 13th Congressional Districts. A map showing the districts is presented as Figure 1-4.

Table 1-3 presents the district information on a community basis and includes state-level information (not pictured).

Figure 1-4. Congressional districts.

<table>
<thead>
<tr>
<th>Community</th>
<th>Congressional District</th>
<th>State House District</th>
<th>State Senate District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinton, Charter Township of</td>
<td>12</td>
<td>31</td>
<td>10</td>
</tr>
<tr>
<td>Eastpointe, City of</td>
<td>12</td>
<td>42</td>
<td>9</td>
</tr>
<tr>
<td>Grosse Pointe, City of</td>
<td>13</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Grosse Pointe Farms, City of</td>
<td>13</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Grosse Pointe Park, City of</td>
<td>13</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Grosse Pointe Shores, Village of</td>
<td>13</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Grosse Pointe Woods, City of</td>
<td>13</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Harper Woods, City of</td>
<td>13</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Harrison, Charter Township of</td>
<td>10</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>Lake Township</td>
<td>12</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>Roseville, City of</td>
<td>12</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>St. Clair Shores, City of</td>
<td>12</td>
<td>24</td>
<td>9</td>
</tr>
</tbody>
</table>

Federal and State-Level Representatives (as of 10/06)

U.S. Senate
Carl Levin
Debbie Stabenow

U.S. House of Representatives
10th District – Candice Miller
12th District – Sander Levin
13th District – Carolyn Kilpatrick

Michigan Senate
2nd District – Martha G. Scott
9th District – Dennis Olshove
10th District – Michael Switalski
11th District – Alan Sanborn

Mich. House of Representatives
1st District – Edward Gaffney
24th District – Jack Brandenburg
31st District – Fred Miller
42nd District – Frank Accavitti
Watershed Science

A drainage area, commonly referred to as a watershed, is any area of land that drains to a common point. That common point may be a lake, the outlet of a river, or any point within a river system. Throughout this document, a number of terms are used to describe the various classifications of drainage areas. The most commonly encountered system is the USGS / NRCS system. This system classifies drainage areas as follows (using the Hydrologic Unit Code [HUC] system):

<table>
<thead>
<tr>
<th>USGS/NRCS Hydrologic Units</th>
<th>Local Example</th>
<th>Local HUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional (2-digit code)</td>
<td>Great Lakes</td>
<td>(04)</td>
</tr>
<tr>
<td>Subregional (4-digit code)</td>
<td>St. Clair System</td>
<td>(0409)</td>
</tr>
<tr>
<td>Accounting (6-digit code)</td>
<td>- same area as above -</td>
<td>(040900)</td>
</tr>
<tr>
<td>Cataloging (8-digit code)</td>
<td>Lake Drainage Area</td>
<td>(04090002)</td>
</tr>
<tr>
<td>Watershed (10-digit code)</td>
<td>LSCW*</td>
<td>(0409000212)</td>
</tr>
<tr>
<td>Subwatershed (12-digit code)</td>
<td>Lake – South*</td>
<td>(040900031201)</td>
</tr>
</tbody>
</table>

* Note: The areas delineated for this plan do not perfectly coincide with the boundaries defined by the USGS/NRCS HUC system. The 12-digit areas utilized in this plan have been defined to account for man-made drainage patterns (e.g., storm sewer systems). No 12-digit areas were previously defined, thus all have a ‘01’ code. The 10-digit area has been defined by the MDEQ with management purposes in mind (a small portion of Roseville drains to the Red Run Drain, and direct lake drainage areas to the north are not included).

An example of how drainage systems nest within each other is shown in the ‘Drainage Areas’ figure on the left-hand side of the page.

For the purposes of this plan, the naming conventions have been modified to adhere to local customs and traditions. The adopted naming conventions to be used throughout this plan are:

<table>
<thead>
<tr>
<th>USGS/NRCS</th>
<th>Local Naming Convention</th>
<th>Local Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Basin</td>
<td>Great Lakes Basin</td>
<td></td>
</tr>
<tr>
<td>Sub-basin</td>
<td>Lake St. Clair Sub-basin</td>
<td></td>
</tr>
<tr>
<td>-- not used as it covers the same area as above --</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watershed</td>
<td>Lake Drainage Watershed</td>
<td></td>
</tr>
<tr>
<td>Subwatershed</td>
<td>LSCW</td>
<td></td>
</tr>
<tr>
<td>Catchment</td>
<td>Lake – South</td>
<td></td>
</tr>
<tr>
<td>Sub-catchment</td>
<td>Subdivision</td>
<td></td>
</tr>
</tbody>
</table>

* Note: 14-digit codes exist and are in the process of being refined but have not been utilized during the development of this plan.

Regional Basins are the largest drainage areas typically utilized for management type activities (examples include the Great Lakes and Mississippi River; larger areas such as ocean basins are not practical management areas). The Regional Sub-basins comprising these drain to major receiving waters such as a large river, estuary or lake (such as Lake Michigan or the Missouri River). Within each Regional Sub-basin are a group of Watersheds, that are a mosaic of many diverse land uses, including forest, agriculture, range and urban areas. Watersheds are composed of a group of Subwatersheds, which, in turn, are composed of a group of Catchments. Within Catchments are Sub-catchments, which are the smallest units in a watershed, defined as the area that drains an individual or group of parcels to the first intersection with a waterbody or storm sewer catch basin.
Current Approach to Control Water Pollution

National Pollutant Discharge Elimination System

The National Pollutant Discharge Elimination System (NPDES) is a cornerstone of environmental protection at the federal level. When the NPDES was established in 1972 (under the Clean Water Act), only one third of our rivers, lakes, and coastal waters were considered fishable and swimmable. Today, approximately two thirds of our waters are healthy. This is due in no small part to the regulation of more than 50 categories of industry (including several hundred thousand businesses) and the nation’s network of more than 16,000 municipal sewage treatment systems. The NPDES permits that regulate discharges from these facilities have resulted in the prevention of billions of pounds of conventional pollutants (e.g. suspended solids) and millions of pounds of toxic pollutants (e.g. dissolved heavy metals) from being discharged into ‘waters of the United States’ (EPA, 2001).

In 1990, the Environmental Protection Agency (EPA) promulgated Phase I of the stormwater rules of the NPDES. This required municipal separate storm sewer systems (MS4s) in areas with 100,000 or more people to regulate the quality of stormwater discharges to waters of the United States.

In 1999, the EPA promulgated Phase II of the NPDES stormwater rules. The Phase II requirements expand the coverage of MS4s to include those in urbanized areas (as defined by the U.S. Census) not previously covered under Phase I. The entirety of the LSCW is considered urbanized area.

Michigan is one of forty-five states and territories authorized to implement the NPDES program. In implementing the Phase II requirements, the MDEQ has developed the NPDES General Permit No. MIG619000 for Coverage of Storm Water Discharges for Municipal Separate Storm Sewer Systems Subject to Watershed Plan Requirements (Appendix B). To date, this is the only instance of a watershed-based permitting approach under the NPDES program. The MDEQ has also developed a jurisdictional-based approach: NPDES General Permit No. MIS040000 for Coverage of Storm Water Discharges from Municipal Separate Storm Sewer Systems with Controls Based on Six Minimum Measures. This approach involves communities working independently to address stormwater discharges through: 1) Public Education and Outreach, 2) Public Participation / Involvement, 3) Illicit Discharge Detection and Elimination, 4) Construction Site Runoff Control, 5) Post- Construction Runoff Control, and 6) Pollution Prevention / Good Housekeeping.

Development of the Watershed Management Plan

By March 10, 2003 municipalities within the LSCW were required to submit an application to seek permit coverage. Acting as the LSCW Subwatershed Advisory Group (SWAG), the member communities filed to obtain coverage under General Permit No. MIG619000 requiring them to develop a watershed management plan (WMP). As such, the communities have all received Certificates of Coverage under the permit with date-specific stipulations for implementing various activities. The submittal due date for this WMP is November 1, 2006.

State of Michigan Symbol of Water Quality

Effective April 21, 2004, the State of Michigan, by Public Act 78 of 2004, officially designated the American lotus blossom (Nelumbo lutea) as the state symbol for clean water. The American lotus is a showy plant that proliferates in shallow wetland areas during the summer months. Micro and macro invertebrates inhabit submerged portions of the plant, which in turn are used as food for fish and other wildlife. The adoption of this symbol demonstrates Michigan’s commitment to wetland protection and clean water.
Benefits of the Watershed Management Plan Approach

Some benefits of the watershed approach include: access to grant funding; sharing of resources, expenses, products, information, and techniques; expanded schedules for watershed management planning, and choices on how and when implementation will occur. A watershed approach involves coordinated efforts with both public and private sectors focusing efforts to address the highest priority problems.

Requirements of the Watershed Management Plan

As described in NPDES General Permit No. MIG619000, the WMP shall, at a minimum, contain the following:

- an assessment of the nature and status of the watershed ecosystem to the extent necessary to achieve the purpose of the WMP;
- short-term measurable objectives for the watershed;
- long-term goals for the watershed (which shall include both the protection of designated uses of the receiving waters as defined in Michigan's Water Quality Standards, and attaining compliance with any Total Maximum Daily Load (TMDL) established for a parameter within the watershed);
- determination of the actions needed to achieve the short-term measurable objectives for the watershed;
- determination of the actions needed to achieve the long-term goals for the watershed;
- assessment of both the benefits and costs of the actions identified above (a "cost/benefit analysis" is not required);
- commitments, identified by specific permittee or others as appropriate, to implement actions by specified dates necessary to achieve the short-term measurable objectives;
- commitments, identified by specific permittee or others as appropriate, to implement actions by specified dates necessary to initiate achievement of the long-term goals; and
- methods for evaluation of progress, which may include chemical or biological indicators, flow measurements, erosion indices, and public surveys.

Water Pollution Control in Michigan and the U.S.

The first formal water pollution control efforts came at the state level with the passage of Public Act 98 of 1913 which established the Health Department and required large communities to: 1) control and treat sewage, and 2) treat and distribute drinking water. The Conservation Department (today’s Department of Natural Resources) was created by Public Act 17 of 1921 to help deal with flagrant and gross pollution of water as well as to protect other natural resources (Sweet, 2006).

The state established the Stream Control Commission in 1929 (Public Act 245) as the official pollution control agency of the state. However, the agency had little influence and any progress made during the 1930s was generally in response to outcries from urban populations that had to deal with the conditions caused by rampant pollution and raw sewage discharge into nearby waterbodies. The Commission wasn’t recognized as a strong force until it won two court orders for enforcement in 1939 and 1940. The Commission was renamed the ‘Water Resources Commission’

One Vision

Incorporating the numerous and diverse requirements of the various programs and permits, the resultant plan has this one main purpose:

“**To improve and protect the ecological, hydrological, and cultural resources of the Lake St. Clair Direct Drainage Subwatershed.**”

Additional WMP Elements

In attempting to make the WMP as robust as possible, this plan has been developed to meet the elements of a number of additional programs, including:

- the Clean Michigan Initiative (CMI) bond grant program;
- the EPA Section 319 National Nonpoint Source Monitoring Program grant requirements;
- the EPA Great Lakes National Program Office grant requirements; and
- other Federal and State requirements for implementing the Clinton River Remedial Action Plan.

Waters of the U.S.

The EPA defines these as:

- Navigable waters;
- Tributaries of navigable waters;
- Interstate waters; and
- Intrastate lakes, rivers, and streams which are:
  - Sources of fish or shellfish sold in interstate commerce;
  - Used by interstate travelers for recreation and other purposes; or
  - Utilized for industrial purposes by industries engaged in interstate commerce.

Source: EPA, no date.
in 1949 by Public Act 245 which also expanded the definition of pollution and required approval for all new uses of state waters (Sweet, 2006).

At the federal level, water pollution control programs were initiated by the 1948 Water Pollution Control Act, which focused on protection of human health, not the environment. The Act allotted funds to state and local governments for water pollution control, placing emphasis on the States’ role in controlling and protecting water resources, with few, if any, federal goals, objectives, limits, or guidelines.

Congress became increasingly interested in water quality degradation from 1956 through 1966, and passed four laws to strengthen the federal role in water pollution control, including the Water Pollution Control Act Amendments of 1956 and the Federal Water Pollution Control Act Amendments of 1961. These initiatives focused on giving additional funding to municipalities for constructing wastewater treatment works.

During this time, the State’s Water Resources Commission instituted the first periodic water quality monitoring program. In addition, the Water Resources Commission was incorporated into the newly renamed Department of Natural Resources in 1965 and the legislature amended Act 245 to further regulate pollution and raw sewage discharge (Sweet, 2006).

The federal Water Quality Act of 1965 represented a major regulatory advancement in water pollution control by requiring States to develop water quality standards for interstate waters by 1967. Michigan established minimum water quality standards for other state waters in 1968. The Water Quality Act also called for States to develop waste load allocations to quantify pollutant loadings that could be discharged without exceeding the water quality standards. Despite increasing public concern and increased public spending, only about half of the States developed water quality standards by 1971. Furthermore, enforcement of the federal legislation was minimal and there were no criminal or civil penalties to enforce the regulation.

The lack of success in developing adequate water quality standards programs, along with growing concern about the environment, prompted President Nixon to form the United States Environmental Protection Agency (EPA) in 1970 to enforce environmental compliance and consolidate federal pollution control activities. In 1972 (and again in 1978), the United States and Canada signed the Great Lakes Water Quality Agreement establishing the Great Lakes Water Quality Board and committing to ‘restore and maintain the chemical, physical, and biological integrity of the waters of the Great Lakes Basin Ecosystem’. In November of 1972, Congress passed a comprehensive recodification and revision of federal water pollution control law, known as the Federal Water Pollution Control Act Amendments of 1972 (more commonly known as the ‘Clean Water Act’ or CWA), marking a distinct change in the philosophy of water pollution control in the United States. The Amendments contained requirements for water quality-based controls, with an emphasis on technology-based, or end-of-pipe, control strategies (EPA, no date). Michigan updated its water quality standards in 1973 to fully reflect the requirements of the CWA (Sweet, 2006).

Subsequent enactments modified some of the earlier CWA provisions. Revisions in 1981 streamlined the municipal construction grants process, improving the capabilities of treatment plants built under the program.

Goals and Principles of the Clean Water Act

The ambitious goals of the Clean Water Act include:

- “it is the national goal that the discharge of pollutants into navigable waters be eliminated by 1985”;
- “it is the national goal that wherever attainable an interim goal of water quality which provides for the protection and propagation of fish, shellfish, and wildlife and provides for recreation in and on the water be achieved by July 1, 1983”;
- “it is the national policy that the discharge of toxic pollutants in toxic amounts be prohibited”.

Other important principles include:

- The discharge of pollutants to navigable waters is not a right.
- A discharge permit is required to use public resources for waste disposal and limits the amount of pollutants that may be discharged;
- Wastewater must be treated with the best treatment technology economically achievable, regardless of the condition of the receiving water; and
- Effluent limits must be based on treatment technology performance, but more stringent limits may be imposed if the technology-based limits do not prevent violations of water quality standards in the receiving water.

Source: EPA, no date.
Changes in 1987 replaced the construction grants program with the State Water Pollution Control Revolving Fund, more commonly known as the SRF. This new funding strategy addressed water quality needs by building on EPA-State partnerships.

Since passage of the CWA, numerous International, Federal, State (e.g. water quality standard updates), Regional, and Local actions have enhanced the control of water pollution in the LSCW. These specific actions are discussed more thoroughly in Chapter 4 (along with a discussion of water quality trends), but some important programs are discussed briefly in the following sections.

**Relevant State Laws**

**Natural Resources and Environmental Protection Act**

Act 451 of 1994, the Natural Resources and Environmental Protection Act (NREPA), is designed to protect the environment and natural resources of the state by: regulating pollutant discharges; regulating land, water, and resource use; and prescribing penalties and remedies for violations.


**Public Act 40 of 1956 – The Drain Code**

The Drain Code sets forth procedures for the creation, maintenance and financing of county and inter-county drains in Michigan. It establishes the office and prescribes the duties and powers of the county drain commissioner. County drains are important to Phase II efforts because many of them are waters of the state, and most of them discharge directly or indirectly to waters of the state (Pratt, 2005). It should be noted that the Macomb County Public Works Office (MCPWO) contends that county drains established before 1973 are exempt from certain state permits even though they are waters of the state.

**Relevant State Programs and Regulations**

**Water Quality Standards**

Under the auspices of the CWA and NREPA, the MDEQ defines water quality standards “to protect the Great Lakes, the connecting waters, and all other surface waters of the state” (MDEQ, 2006). Water quality standards are discussed in greater detail in Chapter 4.

**The Total Maximum Daily Load Program**

MDEQ regulations (as authorized by the EPA under the CWA) require that “when a lake or stream does not meet water quality standards, a study must be completed to determine the amount of a pollutant that can be put in a waterbody from point sources and nonpoint sources and still meet water quality standards, including a margin of safety” (MDEQ, 2006). Any Total Maximum Daily Loads (TMDLs) relevant to this subwatershed are addressed in Chapter 8 (see Action 1-8).
Permits
Despite the NPDES permitting process that covers stormwater-specific issues, other permits may be required for a specific cases. Many state and federal permits are covered under the MDEQ/USACE Joint Permit Application package. The application covers activities relating to: wetlands, floodplains, marinas, dams, inland lakes and streams, great lakes bottomlands, critical dunes, and high-risk erosion areas. Other permits not included in the application include: the Sewerage System Construction Permit and the Groundwater Discharge Permit.

Other Programs
State programs that directly enforce and assist in compliance with federal and state stormwater regulations include the following MDEQ Water Division groups: Storm Water, Soil Erosion and Sedimentation Control, NPDES Permits, and Nonpoint Source Pollution. State-level funding programs that support stormwater related projects include: the SRF, the Strategic Water Quality Initiative Fund, and the CMI.

Supported Plans and Programs
It is imperative to support the goals and objectives of other plans and programs affecting the LSCW to ensure a cohesive management strategy and eventual progress in plan implementation.

St. Clair River and Lake St. Clair Comprehensive Management Plan
The comprehensive management plan was issued in 2004 by the USACE with assistance from the Great Lakes Commission. This joint effort between U.S. federal, state, and local, and Canadian federal and provincial authorities does four things with respect to the Lake St. Clair Regional Sub-basin:

- identifies the causes and sources of environmental degradation;
- addresses the continuous monitoring of contamination levels;
- provides for timely dissemination of information; and
- includes recommendations for potential restoration measures.

In providing cohesion between the two efforts, various elements of the plan influenced the content and structure of this document.

Clinton River Watershed Remedial & Preventative Action Plan
The Remedial Action Plan (RAP) for the Clinton River Watershed was first developed by the Michigan Department of Natural Resources (MDNR) in 1988 in response to the Clinton River being listed as an Area of Concern (AOC) by the Great Lakes Water Quality Board of the International Joint Commission in 1985.

In 1995, the RAP (now a Remedial and Preventative Action Plan) was updated (by the Clinton River Public Advisory Council) to include the entire Clinton River Watershed and the nearshore area of Lake St. Clair impacted by the Clinton River and the Clinton River Spillway. A plan (consisting of 84 actions) was also prepared to address the beneficial use impairments as identified in Annex 2 of the Great Lakes Water Quality Agreement.

The current version of the RAP, issued in 1998, documents changes in the watershed, an updated list of actions (100), progress towards

Special Laws / Programs (continued)
- The Oil Pollution Act authorizes federal response mechanisms designed to prevent catastrophic oil spills and requires submittal of plans to the Coast Guard and EPA; and
- The Water Resources Development Act provides for the conservation and development of water and related resources and authorizes studies and construction of improvement projects for navigation, flood damage reduction, dredging, ecosystem restoration, and water supply.

Clinton River Area of Concern Information
For more information about the Clinton River Area of Concern, refer to the following Web site: http://www.epa.gov/grtlakes/aoc/clintriv.html.

International Joint Commission
Established by the Boundary Waters Treaty of 1909, the commission investigates and monitors transboundary issues when requested to do so by the governments.
implementing the actions, and a new set of education related goals and recommendations.

In 2005, Restoration Criteria for the Clinton River AOC were developed. These criteria describe a pathway that, when competed, will result in the delisting of the area as an AOC.

In developing this document, numerous elements of the various RAPs and associated restoration criteria were considered.

**Water Quality Management Plan for Southeast Michigan**

The Water Quality Management Plan (WQMP) for Southeast Michigan was first prepared by the Southeast Michigan Council of Governments (SEMCOG) in 1978 and subsequently amended in 1979, 1981, and 1999. SEMCOG is the designated Areawide Water Quality Planning Agency for Southeast Michigan under the CWA and prepared the WQMP to assist the agencies and organizations that have a role in the stewardship of the region’s water resources. To this end, the plan contains water quality management policies on a broad range of issues, including: infrastructure, monitoring, management, non-point source pollution, stormwater, pollution prevention, and public education.

The plan also contains regional goals and includes a guide to implementation. Additional implementation guidance was provided in the 2000 document *Putting Southeast Michigan’s Water Quality Plan into Action: Tools for Local Governments*.

The WQMP and follow-up guidance has been considered in the development of this plan, specifically the elements related to regional goals and implementation.

**Developing the Watershed Management Plan**

**Watershed Partners**

The LSCW SWAG spearheaded the efforts involved in developing this WMP. The SWAG was chaired by representatives from the Macomb County Public Works Office (MCPWO) and included representative from:

- each community in the subwatershed;
- Lakeview Public Schools and each nested school district in the subwatershed (see the ‘Nested Jurisdictions’ sub-section);
- the Clinton River Watershed Council (CRWC);
- the Macomb County Health Department (MCHD);
- the Macomb County Department of Planning and Economic Development (MCPED);
- the Macomb County Soil Conservation District (MCSCD);
- the Road Commission of Macomb County (RCMC);
- the Southeast Michigan Council of Governments (SEMCOG);
- the Wayne County Department of Environment;
- the MDEQ; and
- the USACE.

Refer to Appendix C for the contact list of the SWAG members.
**Planning Process**

The management plan was developed through an adaptive management process that had twelve distinct tasks (see Figure 1-5). Four of these tasks were continuous and denoted A, B, C, and D. The other eight were sequential and denoted 1, 2, 3, 4, 5, 6, 7, and 8. These tasks are discussed in the following topics.

Figure 1-5. Watershed management plan development.
Task A: Meetings
This task consisted of monthly SWAG meetings, SWAG subcommittee meetings as necessary, and monthly project management meetings between representatives from the MCPWO, the consulting firm Tetra Tech, the USACE (until late 2005), and others as appropriate.

Task B: Website
Various websites were used to coordinate the planning process, disseminate information, and receive feedback. The EPA hosted the initial project management website. Tetra Tech hosted the website during the final year of the project. The CRWC website was used throughout the project for posting relevant public information and receiving comments.

Task C: Watershed Information Management System
A system for managing appropriate data for watershed planning was proposed and some work was initiated. However, this system was deemed more appropriate for development at the watershed level and has been incorporated in the Clinton River Watershed Initiative being executed through the Oakland County Drain Commissioner’s Office with Tetra Tech as the primary contractor.

Task D: Public Participation Process
The public participation process (PPP) was extensive and essential to the development of the watershed management plan. The ‘Public Participation Process’ sidebar describes this task. Detailed information on the efforts to implement the PPP and the public comments received and used to craft this plan are detailed in Chapter 4.

Task 1: Identify Desired Uses and Concerns
This task involved evaluating the status of the State of Michigan’s designated uses (see Chapters 3 and 5) and consolidating the information gathered during implementation of the PPP to identify desired uses for the subwatershed in addition to any specific concerns.

Task 2: Inventory Current Conditions
This task involved collecting and summarizing existing data about the subwatershed. This generally included information about the history, natural environment and water quality, the people, and the infrastructure. This information is presented in Chapters 1, 2 and 3.

Task 3: Assess Current Conditions
This task involved analyzing and presenting the data that was collected under Task 2 to facilitate planning decisions to be made throughout the project. This data is presented in Chapters 2, 3, and 5.

Task 4: Set Preliminary Goals and Prioritization Process
This task involved developing a list of preliminary goals for the watershed management plan based on the data, analyses, and public input generated through the previous tasks. Certain prioritization and decision-making processes were also developed (implicitly and explicitly) to assist in executing the remaining tasks. These processes are reported in various locations throughout the plan.
Task 5: Gap Analysis, Identify Critical Areas, and Finalize Goals
The gap analysis involved assessing the current level of watershed protection in the subwatershed and identifying the actions required to provide the necessary level of protection. This assessment is presented in Chapter 3. Additionally, current and future pollutant load calculations were performed and the areas of the watershed critical to controlling pollutant loads were identified. This information is presented in Chapter 5. Based on the preliminary goals developed under Task 4, the gap analysis, and critical area identification, the SWAG finalized the goals of the watershed management plan. The final goals of the plan, along with their associated objectives, are found in Chapter 6.

Task 6: Evaluate and Select BMP Strategies
The first step in performing this task was to develop a comprehensive list of the actions that could be implemented to achieve the goals and objectives of the watershed management plan. The contents of Chapter 7 were developed from this list. The next step was to select the appropriate actions presented in the comprehensive list as the ones which would actually be implemented by the entities in the subwatershed. This decision was made considering all of the information compiled and generated under the previous tasks.

Task 7: Prepare Action Plan and Evaluate Costs
Based on the actions that were selected for implementation, an action plan, or ‘implementation roadmap’, was developed. This roadmap is presented as Chapter 8 and includes such details as whether or not the action is a permit requirement, the schedule, milestones, the benefits of the actions, how the actions relate to the goals and objectives, cost estimates, implementation assistance required and potential sources, commitment levels, and the pollutant load reductions associated with the actions. This task also involved defining the evaluation mechanisms and revision procedures to update the plan in the future. This information is presented in Chapter 9.

Task 8: Document Development and Plan Implementation
This task involved assembling all of the information generated during the planning process into the various chapters previously mentioned, in addition to Chapter 10, which defines institutionalization mechanisms and funding options, and other components of the plan such as the appendices, the cover, and the front end items (e.g. table of contents). This task also included compliance with other permit requirements such as the public education plan and implementation, illicit discharge elimination plan and implementation, and stormwater pollution prevention initiative and annual report submittals. For logistical reasons, the implementation of the plan and future updates to the plan are considered to occur under this task.
Nested Jurisdictions

The nested jurisdictions in the subwatershed are associated with county-level government (except where indicated) and include:

- East Detroit Public Schools*
- Grosse Pointe Schools*
- Lake Shore Public Schools; and
- Roseville Community Schools*

* Some facilities within the jurisdiction may be exempt due to their location in a CSO service area.

Figure 1-6. School districts in the subwatershed.

L’Anse Creuse Public Schools and Fraser Public Schools, each with small areas in the subwatershed, are nested under Macomb County’s coverage but are addressed only in the WMP for the Clinton River East Subwatershed (CREW).

South Lake Schools is exempt from coverage based on its location almost entirely within a CSO service area.
References


Pictures

U.S. Capitol Building
http://www.aoc.gov/cc/capitol/c_wf_1.cfm

Michigan Capitol Building
http://www.civics-online.org/library/formatted/images/micapitol.html

The Great Lakes Basin
http://www.great-lakes.net/lakes/basinMap2.gif

Arthur St. Clair
http://www.earlyamerica.com/portraits/images/stclair.jpg

Subwatershed Photo Tour: St. Mark’s Church in St. Clair Shores

Photo courtesy of Tetra Tech.

Subwatershed Photo Tour: The Lac Ste. Claire Nature Sanctuary in St. Clair Shores

Photo courtesy of Tetra Tech.
2. Inventory of the Subwatershed

Introduction

This chapter provides pertinent background information about the natural environment, population demographics, and infrastructure in the subwatershed. This information is important in the adaptive management scheme of watershed planning. It defines the baseline conditions in the subwatershed and will be used in analyses presented in later chapters of this plan and to support implementation of this plan in the future.

The Natural Environment

The natural environment generally describes all living and non-living features that define a given place. In this section of the chapter, a discussion of the natural environment is presented that includes an introduction to many of these features.

Climate

Climate is defined as the meteorological conditions, including temperature, precipitation, and wind, which prevail in a region. The climate of the Lake St. Clair Direct Drainage Subwatershed (LSCW) is a temperate one that shows variations between summer and winter.

Temperature

The temperature in southeast Michigan is seasonal, with a difference of 49°F between the highest and lowest average monthly temperature. Table 2-1 presents the low, mean, and high average monthly temperatures. The record high temperature in the region is 105 °F on July 9th, 1936. The record low is -22 °F on February 9th, 1934 (MRCC, 2005).

In comparing the data from the last 30 years to the entire set (1931-2000), no major warming or cooling trends in temperature were identified.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low/Mean/High</td>
<td>Low/Mean/High</td>
<td>Mean/High/Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>12.8</td>
<td>23.7</td>
<td>35.5</td>
<td>0.12</td>
<td>1.83</td>
<td>4.44</td>
</tr>
<tr>
<td>February</td>
<td>13.4</td>
<td>25.2</td>
<td>36.7</td>
<td>0.09</td>
<td>1.71</td>
<td>5.14</td>
</tr>
<tr>
<td>March</td>
<td>24.7</td>
<td>34.3</td>
<td>45.5</td>
<td>0.00</td>
<td>2.30</td>
<td>5.59</td>
</tr>
<tr>
<td>April</td>
<td>39.5</td>
<td>46.2</td>
<td>54.9</td>
<td>0.40</td>
<td>3.03</td>
<td>5.46</td>
</tr>
<tr>
<td>May</td>
<td>50.0</td>
<td>57.8</td>
<td>67.1</td>
<td>0.33</td>
<td>3.12</td>
<td>7.66</td>
</tr>
<tr>
<td>June</td>
<td>61.8</td>
<td>67.6</td>
<td>73.3</td>
<td>0.22</td>
<td>3.38</td>
<td>8.15</td>
</tr>
<tr>
<td>July</td>
<td>77.1</td>
<td>72.1</td>
<td>79.1</td>
<td>0.00</td>
<td>2.96</td>
<td>9.21</td>
</tr>
<tr>
<td>August</td>
<td>65.3</td>
<td>70.2</td>
<td>77.2</td>
<td>0.37</td>
<td>3.15</td>
<td>10.43</td>
</tr>
<tr>
<td>September</td>
<td>58.1</td>
<td>62.8</td>
<td>69.6</td>
<td>0.00</td>
<td>2.92</td>
<td>7.52</td>
</tr>
<tr>
<td>October</td>
<td>45.7</td>
<td>51.6</td>
<td>62.7</td>
<td>0.00</td>
<td>2.42</td>
<td>8.54</td>
</tr>
<tr>
<td>November</td>
<td>32.9</td>
<td>39.1</td>
<td>49.5</td>
<td>0.43</td>
<td>2.44</td>
<td>6.16</td>
</tr>
<tr>
<td>December</td>
<td>18.0</td>
<td>28.1</td>
<td>39.7</td>
<td>0.14</td>
<td>2.20</td>
<td>6.00</td>
</tr>
<tr>
<td>Annual</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

* - Includes snowfall. ** - As a general rule, divide the snowfall amount by ten to convert to equivalent inches of rainfall. ‘Day’ indicates the maximum amount of snowfall ever recorded for one day in the month. *** - As recorded.

Data Sources

Temperature and rainfall data is an aggregate from ten southeast Michigan counties for 1931-2000. Snowfall data is an average of 30-year means for stations in Mt. Clemens and Detroit. Extremes are taken from the Mid-west Regional Climate Center website. Wind data is from a station in Detroit from 1930-1996.

Table 2-1. Climatic data for the subwatershed.

Precipitation

The average annual precipitation in southeast Michigan is 31.46 inches. It is distributed somewhat seasonally, with a difference of approximately 1.7 inches between the lowest and highest average monthly precipitation. A portion of this precipitation typically occurs as snowfall in October through April (and sometimes May). Table 2-1 presents the low, mean, and high average monthly precipitation. The record 1-day rainfall in the region is 5.13 inches on July 19th, 1976.

The average yearly precipitation for the period of 1971-2000 is 1.4 inches greater than the 1931-2000 average with most of the increase occurring in the late summer months. This does not necessarily imply a trend in precipitation as it may merely be a statistical fluctuation.

Wind

In general, the wind in the region tends to come from the southwest. The average wind speed for the winter months is up to 4 mph faster than the summer months and the highest wind gusts also occur during the winter. Table 2-1 presents this information, including prevailing direction, speed, and peak gust speed.

Geology, Topography, and Soils

Historical climatic conditions have been a driving force in defining the current geology of the LSCW. In this plan, the discussion of geology includes a brief geologic history and the current topographical and soil characteristics of the subwatershed.

Geologic History

Michigan has been subjected to four glacial periods: Wisconsian, Illinoian, Nebraskan, and Kansian. The last of these, the Wisconsian, began 110,000 years ago, peaked 20,000 year ago and ended about 10,000 years ago (Smith, 2002). It is this glacial period that is responsible for much of the development of Michigan’s underlying geology.

The LSCW lies in what is known as the “Maumee Lakeplain”. This is a plain of fine sediments that were deposited over 11,000 years ago on the bottom of a series of glacial lakes that covered portions of Michigan, Ohio and Ontario. It is characterized by the presence of broad glacial drainage-ways of sandy soil, water-lain moraines (low-lying landforms where the glaciers and glacial lakes were in contact), and beach ridges of the former lakes that in some cases can still be identified inland of existing shorelines (Smith, 2002; GLC, 2005).

The glacial activities in the region defined a diverse landscape through the erosion of existing landforms and the subsequent deposition of these eroded materials. The major depositional types include:

- Glacial till – poorly sorted and poorly rounded material ranging in size from pebbles to boulders
- Glacial outwash – finer material deposited by glacial melt water
- Lacustrian material – fine materials deposited in still or ponded glacial meltwater

These materials, and those recently deposited from local rivers and streams (alluvial material), are the parent materials of the soils that we find today.

Effects of the Great Lakes

The lakes moderate the temperatures of the surrounding land, cooling the summers and warming the winters. This results in a milder climate compared to other locations of similar latitude. The lakes also act as a giant humidifier, increasing the moisture content of the air throughout the year.

Source: GLIN, 2005.

24-hour Storm Events

The percentages below are the chance that the given 24-hour rainfall will be exceeded in a 1-year period. For example, there is a 50% chance that it will rain at least 2.26 inches in one 24-hour period during any given year.

- 50% = 2.26 in.
- 4% = 3.60 in.
- 20% = 2.75 in.
- 2% = 3.98 in.
- 10% = 3.13 in.
- 1% = 4.38 in.


Average Annual Runoff

The average annual runoff in the subwatershed ranges from 8 inches/year in the northern and southern portions to 7 inches/year near the center.

Soil Associations

Hoytville-Nappanee-Blount (HNB)
Nearly level to gently sloping, poorly drained and somewhat poorly drained soils that have a dominantly fine textured subsoil; on uplands.

Lenawee-Toledo-Fulton (LTF)
Nearly level, poorly drained soils that have a moderately fine textured to moderately coarse textured subsoil; on lake plains.

Urbanland-Blount-Lenawee (UBL)
Urban land and nearly level and gently undulating, somewhat poorly drained and poorly drained loamy and silty soils; on lake plains and moraines.


Hydrologic Soil Groups

A useful classification of soil types is based on the soil’s runoff potential. The four classifications utilized by the Natural Resources Conservation Service (NRCS) are:

A - sand, loamy sand or sandy loam types of soils; low runoff potential and high infiltration rates even when thoroughly wetted; chiefly consist of deep, well to excessively drained sands or gravels and have a high rate of water transmission;

B - silt loam or loam; moderate infiltration rate when thoroughly wetted; consists chiefly or moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures;

(continued on following page)

Soils

The parent materials have combined to form more than 50 distinct soil types in Macomb and Wayne Counties alone. For planning purposes, it is useful to group the types into soil associations which are landscapes that have distinctive proportional patterns of soils consisting of major soil groups with some minor components. The three soil associations found in the subwatershed are presented in the “Soil Associations” dialog box. The extent of these associations throughout the subwatershed is shown in Figure 2-1.

Figure 2-1. Soil associations in the subwatershed.
Topography
As the soil association descriptions indicate, the topography of the land also influences the soil association classification. The elevation ranges from 574 ft to 626 ft above sea level. The maximum elevations occur on the western edge of the LSCW, which is part of the Fort Wayne – Defiance Moraines. The rest of the subwatershed is generally flat with rolling plains. Figure 2-2 shows the elevations throughout the subwatershed.

![Figure 2-2. Elevation in the subwatershed.](image)

Hydrological Features
Hydrological features such as rivers, stream, lakes, and wetlands have developed over time as a result of climatic and geological conditions. It is these features, specifically Lake St. Clair and its tributaries within the subwatershed, that this plan aims to protect.

Rivers, Streams, and Lakes
The LSCW has approximately 16 miles of open channel waterways, a few small lakes / ponds, and 19 miles of shoreline on Lake St. Clair. These waterbodies can be seen in figures throughout the plan.

Hydrologic Soil Groups (continued)
C - sandy clay loam; have low infiltration rates when thoroughly wetted; consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine structure; and
D - clay loam, silty clay loam, sandy clay, silty clay or clay; has the highest runoff potential; very low infiltration rates when thoroughly wetted; consist chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface and shallow soils over nearly impervious material.

The hydrologic soil group classification for the soil types found in the subwatershed can be found in Appendix C of the MDEQ’s ‘Stormwater Management Guidebook’ (MDEQ, 1999).


Lakeshore in Grosse Pointe Park
![Image](image)

In natural areas, there are also smaller waterways, or ‘headwaters’, that are intermittent in nature and will not show up on most maps.

Headwaters provide many of the benefits that scientists call “ecosystem services”, including (Sierra Club, 2003):

- Natural flood control through:
  - dampening the effects of impervious cover; and
  - providing storage and slow release, evaporation, and/or percolation of water;
- Maintaining water supplies by:
  - Providing groundwater filtering and recharge; and
  - Maintaining surface water flow levels;
- Trapping excess sediment;
- Cleansing/transforming nutrients;
- Recycling organic matter; and
- Maintaining biological diversity by:
  - acting as habitat and spawning / mating grounds;
  - supporting nearly 50% of Michigan’s threatened / endangered species; and
  - supporting populations that will later re-colonize impaired downstream waters as they improve.

Many of the waterbodies in the subwatershed have been modified such that they no longer exist in their ‘natural state’ and thus have decreased ecosystem services. Some of these changes are discussed later in this chapter. The implications of these changes are discussed in Chapter 3.

**Wetlands**

According to the MDEQ, wetlands are defined as “land characterized by the presence of water at a frequency and duration sufficient to support and that under normal circumstances does support wetland vegetation or aquatic life” (MDEQ, 2001). Generally, wetlands are lands where saturation with water is the dominant factor determining soil types, plant communities, and animal communities (Cowardin, 1979).

Wetlands are often found in headwater areas and provide the same ecosystem services as headwater streams. Wetlands and headwater streams are important areas of transition between water and land. Wetlands are extremely diverse and productive biological systems that typically support the primary producers of the aquatic food chain including free-floating and attached algae (phytoplankton and periphyton, respectively) and submerged aquatic plants (macrophytes).

Figure 2-3 shows the location of wetlands in the subwatershed based on 2001 National Wetlands Inventory data. Table 2-2 presents the wetland coverage for the subwatersheds.

Currently, wetland coverage in the subwatershed is 0.6% of land area (down from the historical value of 37%). The Lake - North catchment is 1.6% wetlands and accounts for 97% of the subwatershed total. The other catchments have less than 0.1% of their land as wetland. The lack of wetlands for the subwatershed as a whole can be attributed in part to the intense urban development of these areas.
Figure 2-3. Wetland locations and types in the subwatershed.

Emergent Wetland Types

*Emergent Wetlands* – include bogs, meadows, marshes, fens, and potholes.

*Open Water* – Deeper, perennial pools within wetlands and shallow portions of lakes and rivers. The warmth of the water supports numerous aquatic organisms. Typically home to submerged plants which provide unique habitat resources such as substrates for macro-invertebrates, cover and forage for waterfowl, and spawning and nursing for fish. Forty-six types of submerged plants (plants that grow underwater) have been identified in Lake St. Clair alone (USACE, 1996) where they flourish due to the relative shallowness.

Forested Wetland Types

These are often referred to as ‘Swamps’.

*Forested* – Forested swamps occur where trees grow in moist soils. They are often inundated with floodwater from nearby rivers and streams. A sub-classification related to the subwatershed is the ‘Hardwood Swamp’.

*Scrub/Shrub* – Shrub swamps, are similar to forested swamps, except that shrubby vegetation predominates.

Source: Cwiekal, 2003; Smith, 2002.

Table 2-2. Wetland coverage in the subwatershed.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Wetland Acres</th>
<th>Wetland Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>&lt; 1</td>
<td>&lt; 0.1%</td>
</tr>
<tr>
<td>Lake – North</td>
<td>153</td>
<td>1.6%</td>
</tr>
<tr>
<td>Lake – South</td>
<td>3</td>
<td>&lt; 0.1%</td>
</tr>
<tr>
<td>Total</td>
<td>157</td>
<td>0.6%</td>
</tr>
</tbody>
</table>
Stream Banks and Shorelines

As with wetlands and headwater streams, stream banks and shorelines are transition zones between the water and land. Where stream banks define a river channel, a shoreline defines an impoundment such as a lake, reservoir, or pond. Natural, intact stream banks and shorelines are important because they reduce the potential for erosion and thus control migration of watercourses. Additionally, healthy stream banks and shorelines help filter pollutants before they reach the waterbodies, and provide habitat for benthic organisms.

An examination of the importance of stream bank and shoreline health requires a discussion of certain concepts, which follows below.

Riparian Corridor

The riparian corridor includes the waterbody, the surrounding lowlands (floodplain), and the fringe areas between the lowlands and uplands (see the ‘Riparian Corridor’ figure, inset). This corridor benefits the stream in a number of ways:

- Leafy vegetation (trees, shrubs, grass, cropped land) protects the soil from the direct force of falling rain;
- The vegetation and detritus on the forest floor act to slow runoff and erosion, thus reducing scour and allowing sediments to settle out;
- Organic materials on the forest floor act to filter pollutants from runoff flowing into waterbodies; and
- The root systems of stream bank and shoreline vegetation act to encourage infiltration (thereby reducing runoff volume) and reinforce the bank by retaining the soil.

Stream Channel and Processes

The stream channel is defined by the stratum in which it is located (dependent on geology, soils, and vegetation), the flow rate of the water, and the slope of the land (FISRWG, 1998). These factors are directly related to the conditions in the riparian corridor.

While streams may exist in a straight or braided pattern, most natural channels in Michigan display a winding nature, exhibiting periodic bends (as shown in the ‘Stream Meanders’ figure). These bends develop over geologic periods of time as the water erodes and deposits sediment. In a bend, the force of the water erodes sediment along the outer bank. These sediments are then deposited where stream velocity is lowest (the brown areas in the ‘Stream Meanders’ figure inset), either: 1) on the inside bank (due to the screw-like path of water in the channel) or 2) further downstream along the point bars. In many urbanized areas, modifications to streams have resulted in them being straightened for maximum hydraulic capacity (see the ‘Hydrologic / Hydraulic Infrastructure discussion in the ‘Infrastructure’ subsection of this chapter).
In this natural meandering state, the streams develop extensive storage along its path that function to attenuate flooding. Additionally, the meandering nature of streams provides a longer flow path as the water travels on its way, reducing the effective velocity of a stream and thus maintaining the erosion and deposition of sediments in a quasi-balance.

The bankfull discharge is defined as the flow that fills the channel from bank-to-bank before spilling onto the floodplain (Leopold, 1969). In streams with deep cut banks, the level associated with this flow may be lower than the bank level. In any case, this discharge, with an average recurrence interval of approximately 1.5 years, is the dominant flow rate that transports the abundance of sediments and thus defines the stream channel (Leopold, 1994). While more extreme flows, such as the 50- or 100-year rate, transport more sediments in a single event, it is the high relative erosion potential of the bankfull discharge, coupled with its frequency, that make it the controlling flow with respect to channel formation processes.

Flow rates greater than the bankfull discharge generally cause waters to overtop the banks and spill onto the floodplain. These floodplain waters still move significant amounts of sediment but have less erosion potential due to greatly decreased velocities (lower energy). While the waters in the bank during these events still have high erosion potential, the overall erosion potential of these events (relative to flow rate) is tempered by the floodplain waters.

**Vegetation, Habitat, and Wildlife**

All of the previously discussed elements of the natural environment determine the type of vegetation, habitat, and wildlife that can be supported. This introductory discussion presents some of the particulars that may be encountered and some scientific background for understanding their interactions.

The subwatershed lies within the northern limits of the Eastern Deciduous Forest Region. It is considered part of the “Carolinian Life Zone” because of its link with forests located farther south. Many of the species found here are at the northern boundaries of their range.

**Dominant Flora and Habitat**

As part of an ancient glacial lakeplain, the poorly drained silts and clays of the subwatershed supported hardwood forests and swamps, with ancient beaches and sandy deposits supporting prairie and savanna. The land cover circa 1830 is shown in Figure 2-7 (page 2-19) and is described more thoroughly in the ‘Land Cover and Use’ portion of the ‘The People and Infrastructure’ section of this chapter.

Development, including logging, clearing for farming, and urbanization, has resulted in the loss of most of these habitats. Of the natural habitat remaining, the most abundant is the wooded area. In terms of natural terrestrial habitat, very little remains. In terms of water habitat, the subwatershed has some river/stream habitat and that of the open water of Lake St. Clair. The present day land cover can be seen in Figure 2-8 (page 2-20). The historical and existing habitats, including a discussion of human-modified lands, and the flora found in them are discussed.

**Bank Slope Processes**

There are numerous natural processes that affect the banks of streams and shorelines. The most basic process is the slow downhill movement of materials over time due to the constant stress of gravity. This movement ranges from a single rock rolling downhill to the slow, down slope movement of large sections of soil ("creep").

More dramatic mass movements are facilitated by the effects of water, including the erosive actions of waves and high velocities, and the added weight of slope materials when they become saturated (Hughes, 2005; TPE, 2005). These mass movements include “earthflow”, “slump”, “topple”, and “subsidence”. More information can be found in related scientific texts.
**Tree Canopy**

Tree canopy is essential to environmental and economic health, providing additional cooling, reducing energy needs, increasing property values, improving air/water quality, reducing the cost of stormwater control, and contributing to a more beautiful, friendlier, and livable community. "The benefits represent hefty dollar amounts, many millions to big cities even after the costs of tree management, which average less than 1 percent of municipal budgets. Psychological benefits, too, are worth plenty. People simply feel better and kinder around trees. Trees bring birdsong. They provide privacy and a sense of protection. Hospital patients exposed to trees heal faster, feeling less pain."


---

**Wooded Areas**

Historically, old-growth forests dominated the subwatershed and supported numerous tree species, wildflowers, and grasses, and had a deep organic forest floor that supported ferns, mosses, and vines, with plenty of standing and fallen deadwood.

The wooded areas that remain today are often disjointed, thus fragmenting the habitat, and some are artificially maintained, meaning organic matter that should enrich the forest floor is often removed. Additionally, fire suppression has resulted in the proliferation of fire-intolerant species. The wooded area subtype relevant to the subwatershed is the ‘Beech-Maple Forest’.

**Prairie**

Prairies contain an abundance of species dominated by prairie flowers / grasses and sedges with few or no trees. They are an important habitat for many, supporting more biodiversity than any other type of terrestrial ecosystem. Prairies were the first to yield to and be drained for farming practices in the early 1800s. Some of the prairies that were not drained have disappeared as fire suppression has allowed woody species to invade and begin the succession to wooded habitat (Smith, 2002). In fact, in Southeast Michigan, 122,245 acres of combined prairie and oak savanna existed prior to European settlement, but less than 800 total acres remain today (Smith, 2002).

**Riparian Zones**

Riparian zones are the areas along the banks of waterbodies that provide an important transition between water and land. This unique habitat includes diverse plant communities adapted to fluctuating water levels and provides an important migratory corridor for wildlife in an increasingly fragmented natural landscape. Approximately 70 percent of all terrestrial animal species use riparian zones at some point in their life cycle (GLC, 2005). The riparian zone also functions to protect water quality and mitigate such factors as temperature (which also affects dissolved oxygen levels) and flow rate flashiness.

**Fish Habitat**

Rivers and streams have many habitat types, including:

- **Riffles** – shallow areas where rocks break the surface and aerate the water (important areas for fish spawning);
- **Runs** – fast, deep areas where the water surface is turbulent due to the flow;
- **Pools** – wide, deep areas with slow currents that occur between riffles and runs and are favored habitats of fish; &
- **Floodplains** – land around a stream that is periodically covered with water.

Meanders in a stream enhance the quantity and quality of habitat by creating a longer stream that disperses flow energy (i.e., reduces velocity).
and amphibians, and insects, as well as vital linkages between larger habitat patches. Within these corridors, native plants which provide berries, nectar or seeds are particularly valuable for wildlife (GLC, 2005).

**Dominant Fauna**

The vegetative habitats previously described support distinct animal populations. However, most animals rely on multiple habitat types to sustain their lifecycles (i.e., birds may nest in trees but feed on prey from the water). Little data exists documenting the populations of wildlife in the subwatershed, but some of the general types of animals are discussed.

**Mammals**

Mammals are warm-blooded animals that give birth to live young and include such organisms as mice, squirrels, raccoons, and deer. Mammals are generally terrestrial but some obvious examples, such as beavers and otters, are highly dependent on aquatic habitat.

**Birds**

Birds are warm-blooded animals that lay eggs and have wings for flight. Birds occupy an abundance of habitats including terrestrial and water-reliant and often migrate between winter and summer locations. Terrestrial birds that may be encountered in the subwatershed include songbirds, raptors, owls, and woodpeckers. Others that tend to nest near water include waterfowl, shorebirds, blackbirds, wrens, cormorants, and herons.

**Reptiles**

Reptiles are cold-blooded animals that typically lay eggs and have scaly coverings. They typically utilize both terrestrial and aquatic habitats and are very sensitive to habitat fragmentation (thus their scarcity in urban/suburban settings). Snakes and turtles are two examples that may be encountered in the subwatershed.

**Amphibians**

Amphibians are cold-blooded, smooth skinned animals that typically undergo an aquatic larval stage. Like reptiles, they utilize both terrestrial and aquatic habitats and are sensitive to habitat fragmentation. Amphibians that may be encountered in the subwatershed include: frogs, skinks, newts, and salamanders.

**Fish**

Fish are aquatic, cold-blooded animals that breathe oxygen through gills. Fish are commonly classified into two major groups:

- Bottom feeders that feed on most macro-invertebrates and substrate materials and, therefore, survive in most environments; and
- Fish that feed on select types of prey. This group ranges from small fish that feed on macro-invertebrates to large fish that feed on other fish. The presence of this group is often associated with clean water as this is where prey is available (MDNR, 1973).

Although many of the native fishes have been eliminated (because of overfishing, habitat destruction, invasive species effects, etc.), Lake St. Clair probably contains the most diverse fish community of any of the Great Lakes with 45 different species (GLC, 2005). The three most common species are the mimic shiner, rainbow smelt, and yellow perch. Populations of sturgeon and mooneye are also relatively healthy (LSC, 2000).

**Neither Plant nor Animal**

**Fungi** - These decomposers decay organic matter, making nutrients from dead plants available for future plant growth.

Source: Smith, 2002.

**Bacteria** – single-celled organisms that exist in nearly all habitats in the world. They play important roles in the cycling of carbon, nitrogen, and sulfur in the environment. While many bacteria assist in the life cycles of humans, many have the potential to cause disease. These are of interest in terms of water quality.

Source: UCB, 2005.

**Zooplankton**

Zooplankton comprises the animal portion of the plankton community. Zooplankters prey on phytoplankton and subsequently provide a food source to other organisms. In this manner, nutrients are transmitted to higher organisms including macro-invertebrates, and planktivorous fish.

**Yellow Perch**

Source: Canadian Biodiversity, 2006.
Macroinvertebrates

Macroinvertebrates are backbone-less organisms that are large enough to see with the naked eye. Two examples are insects and benthic organisms. Insects perform important functions in ecosystems such as pollination and organic matter decomposition. The larval stages of many are benthic.

Benthic macroinvertebrates are organisms which live at least part of their life cycles within or upon the substrate. The major taxonomic groups common to freshwaters include insects, worms, mollusks (e.g. shellfish), and crustaceans (e.g. crayfish) (MDNR, 1973).

An important example is the mayfly (also known as the fishfly), swarms of which can be seen around water during the summer. The burrowing mayfly nymph, which feeds on decaying organic plants, is an extremely important food for fish in open waters. The flying adult is eaten by birds. These insects, and others with similar life cycles, are important water quality indicators because they are highly sensitive to environmental pollutants and thus good indicators of water quality. Populations of these organisms are often documented and analyzed during water quality assessments.

Another intriguing example is the freshwater mussel. These organisms have limited mobility and breathe and feed by filtering water through their gills. The reproduction of most mussels involves a parasitic larval stage that requires host fish. Due to their limited mobility and reproductive cycle, they are highly sensitive to disturbances in flow, poor water quality, and fish populations. Virtually all of the species that are listed as endangered, threatened, or of special concern in Michigan are confined to the waters of southeast Michigan. Historically, Lake St. Clair and its tributaries have been home to large diverse populations of freshwater mussels (with over 30 species documented).

Recognized Valuable Natural Features

Natural features include elements of the natural environment that are recognized as valuable resources (i.e., wildlife populations, habitat, geological features, and waterbodies). This discussion focuses on those in which unique landscape features or environments exist.

Unique landscapes and environments provide an abundance of wildlife habitat and the protection of these areas has been directly linked to long-term water quality, especially in urban centers. In Macomb County, a study was done to delineate areas with a natural environment very similar to the one found 200 years ago (MCDPED, 2004). The locations of these features are shown in Figure 2-4. Table 2-3 shows a breakdown of these features based on the subwatershed catchments. Also included in the table are specific features that have been identified by the Michigan Natural Features Inventory (MNFI, 2005):

- Great Lakes Marsh (GLM) – A non-forested wetland with multiple ecologic communities that is directly connected to a large freshwater lake.
Figure 2-4. Natural features.

Table 2-3. Natural features.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Natural Area (acres)</th>
<th>Natural Area as Percent of Total Area</th>
<th>MNFI Features (refer to text on page 2-11 for definitions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>0.0</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Lake – North</td>
<td>116.2</td>
<td>1.2%</td>
<td>GLM</td>
</tr>
<tr>
<td>Lake – South</td>
<td>0.0</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>116.2</td>
<td>1.2%</td>
<td>—</td>
</tr>
</tbody>
</table>
The People and Infrastructure

In the urban setting of the LSCW, the influence of humans is the major driving force in modifying the natural environment. This section of the chapter summarizes the human population and the associated infrastructure that impacts the natural environment.

Community Profiles

The Southeast Michigan area was originally settled 10,000 years ago and became home to numerous Native American tribes including the Ojibwa, Chippewa, Ottawa, and Potawatomi (Oakland County, 2004). In 1701, the first European settlement of Fort Pontchartrain (now Detroit) marked the beginning of three-hundred-plus years of development and non-indigenous population growth (native populations declined due to the introduction of new diseases and other social upheaval). The first known population data in the region indicates that there were 500 people in the City of Detroit in 1796. In 1840, the first population data for the region indicated a population of 103,064 in southeast Michigan (SEMCOG, 2001b). A more detailed history of the area can be found in “The Clinton River: An Historical Sketch”, prepared by the Clinton River Watershed Council in 1987.

As of 2000, the LSCW alone was home to approximately 211,000 people (USCB, 2000). The “Population Growth 2000 to 2005” dialog box presents community-specific information concerning population trends between 2000 and the present day (trend data includes parts of the community outside of the LSCW). Year 2000 data is the primary set referenced throughout this section.

Population by Community

Table 2-4 presents the population of each community and the portion of this population present in the subwatershed. A map of the population density is presented as Figure 2-5.

### Table 2-4. Year 2000 community populations and densities.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinton Township</td>
<td>95,648</td>
<td>31%</td>
<td>2,926</td>
<td>14%</td>
<td>6.36</td>
<td>322.14</td>
</tr>
<tr>
<td>Eastpointe</td>
<td>34,077</td>
<td>100.0%</td>
<td>34,077</td>
<td>15.9%</td>
<td>10.56</td>
<td>36.88</td>
</tr>
<tr>
<td>Grosse Pointe</td>
<td>5,670</td>
<td>100.0%</td>
<td>5,670</td>
<td>2.6%</td>
<td>8.36</td>
<td>22.83</td>
</tr>
<tr>
<td>Grosse Pointe Farms</td>
<td>9,764</td>
<td>100.0%</td>
<td>9,764</td>
<td>4.6%</td>
<td>5.55</td>
<td>20.10</td>
</tr>
<tr>
<td>Grosse Pointe Park</td>
<td>12,443</td>
<td>100.0%</td>
<td>12,443</td>
<td>5.8%</td>
<td>8.92</td>
<td>76.85</td>
</tr>
<tr>
<td>Grosse Pointe Shores</td>
<td>2,743</td>
<td>100.0%</td>
<td>2,743</td>
<td>1.3%</td>
<td>4.29</td>
<td>13.84</td>
</tr>
<tr>
<td>Grosse Pointe Woods</td>
<td>17,080</td>
<td>100.0%</td>
<td>17,080</td>
<td>8.0%</td>
<td>8.11</td>
<td>26.88</td>
</tr>
<tr>
<td>Harper Woods</td>
<td>14,254</td>
<td>100.0%</td>
<td>14,254</td>
<td>6.7%</td>
<td>8.50</td>
<td>28.82</td>
</tr>
<tr>
<td>Harrison Township</td>
<td>24,461</td>
<td>16.5%</td>
<td>4,029</td>
<td>1.9%</td>
<td>6.36</td>
<td>55.72</td>
</tr>
<tr>
<td>Lake Township</td>
<td>80</td>
<td>100.0%</td>
<td>80</td>
<td>0.0%</td>
<td>0.74</td>
<td>13.26</td>
</tr>
<tr>
<td>Roseville</td>
<td>48,129</td>
<td>100.0%</td>
<td>48,129</td>
<td>22.5%</td>
<td>7.58</td>
<td>54.09</td>
</tr>
<tr>
<td>St. Clair Shores</td>
<td>63,096</td>
<td>100.0%</td>
<td>63,096</td>
<td>29.4%</td>
<td>8.56</td>
<td>147.82</td>
</tr>
<tr>
<td>Total</td>
<td>---</td>
<td>---</td>
<td>214,293</td>
<td>100.0%</td>
<td>8.16</td>
<td>---</td>
</tr>
</tbody>
</table>

Note: Block-level data was used to determine population numbers. Where blocks were truncated due to subwatershed boundaries, the population was prorated based on area.

* - the maximum population density is calculated on a census block basis.

Figure 2-5. Population densities in the subwatershed.

The largest contributors of population to the subwatershed are the City of St. Clair Shores (29.8%), the City of Roseville (22.7%), and the City of Eastpointe (16.1%). These cities (along with the Cities of Grosse Pointe, Grosse Pointe Park, and Harper Woods) also have higher population densities than the subwatershed average.

**Population Trends**

As shown in Table 2-5, Clinton Township and Harrison Township were the fastest growing of the communities from 1970 to 2000 with 95.7% and 30.4% growth, respectively. However, these communities only account for approximately 2% of the subwatershed population. All of the other communities experienced a population decline over this period. Over the 2000 to 2030 period, Clinton and Harrison Townships are forecasted to experience positive growth, although at more modest rates of 11.5% and 1.5%, respectively. Harper Woods is expected to grow 2.9% (and Lake Township is expected to grow 5% - although this only equals an increase of four people). All of the other communities are forecasted to show a population decline over this period.

In general, the subwatershed is highly developed and should not experience significant population shifts. The effects of urban sprawl in the state result in a migration of residents from urban cities to more rural settings. This is reflected in 4% decline in population for the subwatershed communities for the 1970 to 2000 period and the forecasted 3.2% decline for the 2000 to 2030 period.

**Development Trends**

In general, the subwatershed is completely developed. Small portions of the northern-most communities may experience some new residential and commercial development, but the central and southern portions are limited to redevelopment. Even then, these opportunities are quite limited (SEMCOG, 2004b; 2001a; 2004c).

**Low Density Due to Large Lot Waterfront Estates**

Image derived from maps.yahoo.com.
### Table 2-5. Community populations for 1970, 2000, and 2030.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinton Township</td>
<td>48,865</td>
<td>95,648</td>
<td>106,607</td>
<td>95.7%</td>
<td>11.5%</td>
</tr>
<tr>
<td>Eastpointe</td>
<td>45,920</td>
<td>34,077</td>
<td>30,928</td>
<td>-25.8%</td>
<td>-9.2%</td>
</tr>
<tr>
<td>Grosse Pointe</td>
<td>6,637</td>
<td>5,670</td>
<td>5,294</td>
<td>-14.6%</td>
<td>-6.6%</td>
</tr>
<tr>
<td>Grosse Pointe Farms</td>
<td>11,701</td>
<td>9,764</td>
<td>8,684</td>
<td>-16.6%</td>
<td>-11.1%</td>
</tr>
<tr>
<td>Grosse Pointe Park</td>
<td>15,641</td>
<td>12,443</td>
<td>11,193</td>
<td>-20.4%</td>
<td>-10.0%</td>
</tr>
<tr>
<td>Grosse Pointe Shores</td>
<td>2,907</td>
<td>2,743</td>
<td>2,706</td>
<td>-5.6%</td>
<td>-1.3%</td>
</tr>
<tr>
<td>Grosse Pointe Woods</td>
<td>21,878</td>
<td>17,080</td>
<td>15,736</td>
<td>-21.9%</td>
<td>-7.9%</td>
</tr>
<tr>
<td>Harper Woods</td>
<td>20,186</td>
<td>14,234</td>
<td>14,668</td>
<td>-29.4%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Harrison Township</td>
<td>18,755</td>
<td>24,461</td>
<td>24,830</td>
<td>30.4%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Lake Township</td>
<td>135</td>
<td>80</td>
<td>84</td>
<td>-40.7%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Roseville</td>
<td>60,529</td>
<td>48,129</td>
<td>42,149</td>
<td>-20.5%</td>
<td>-12.4%</td>
</tr>
<tr>
<td>St. Clair Shores</td>
<td>88,093</td>
<td>63,096</td>
<td>53,997</td>
<td>-28.4%</td>
<td>-14.4%</td>
</tr>
<tr>
<td>Total</td>
<td>341,247</td>
<td>327,445</td>
<td>316,876</td>
<td>-4.0%</td>
<td>-3.2%</td>
</tr>
</tbody>
</table>


### Population by Catchment

It is useful from a watershed planning perspective to aggregate populations on the subwatershed catchments. This data is presented in Table 2-6.

### Table 2-6. Subwatershed community populations for 2000 presented on a catchment basis.

<table>
<thead>
<tr>
<th>Community</th>
<th>Grosse Pointe</th>
<th>Lake - North</th>
<th>Lake - South</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinton Township</td>
<td>---</td>
<td>2,926</td>
<td>---</td>
<td>2,926</td>
</tr>
<tr>
<td>Eastpointe</td>
<td>---</td>
<td>---</td>
<td>34,077</td>
<td>34,077</td>
</tr>
<tr>
<td>Grosse Pointe</td>
<td>5,670</td>
<td>---</td>
<td>---</td>
<td>5,670</td>
</tr>
<tr>
<td>Grosse Pointe Farms</td>
<td>9,764</td>
<td>---</td>
<td>---</td>
<td>9,764</td>
</tr>
<tr>
<td>Grosse Pointe Park</td>
<td>12,443</td>
<td>---</td>
<td>---</td>
<td>12,443</td>
</tr>
<tr>
<td>Grosse Pointe Shores</td>
<td>2,725</td>
<td>---</td>
<td>18</td>
<td>2,743</td>
</tr>
<tr>
<td>Grosse Pointe Woods</td>
<td>17,080</td>
<td>---</td>
<td>---</td>
<td>17,080</td>
</tr>
<tr>
<td>Harper Woods</td>
<td>14,254</td>
<td>---</td>
<td>---</td>
<td>14,254</td>
</tr>
<tr>
<td>Harrison Township</td>
<td>---</td>
<td>4,029</td>
<td>---</td>
<td>4,029</td>
</tr>
<tr>
<td>Lake Township</td>
<td>---</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Roseville</td>
<td>---</td>
<td>33,973</td>
<td>14,156</td>
<td>48,129</td>
</tr>
<tr>
<td>St. Clair Shores</td>
<td>---</td>
<td>29,088</td>
<td>34,008</td>
<td>63,096</td>
</tr>
<tr>
<td>Total</td>
<td>61,936</td>
<td>70,017</td>
<td>82,339</td>
<td>214,293</td>
</tr>
</tbody>
</table>

| Percentage       | 28.9%          | 32.7%         | 38.4%         | 100.0%  |
| Average Population Density | 7.60          | 7.31          | 9.66          | 8.13    |
| Maximum Population Density* | 76.85         | 322.14        | 67.12         | ---     |

* - Note: Given in people/acre and calculated on a census block basis. Source: USCB, 2000.

All three of the catchments represent similar total populations with Grosse Pointe at 28.9%, Lake – North at 32.7%, and Lake – South at 38.4% of the total subwatershed population.

The Lake – South catchment has the highest population density at 9.66 people per acre. The Lake – North has the lowest population density at 7.31 people per acre. The average population density for the subwatershed is 8.13 people per acre.

**Income and Education**

In the watershed planning process, it is important to consider not only the affected population, but also the characteristics of that population. The characteristics help evaluate the potential for watershed planning success and involvement. Common characteristics used to describe the population include median household income and education level.

Median household incomes in the subwatershed are presented in Figure 2-6. Income and education information is presented in Table 2-7.

**Figure 2-6. Median household incomes in the subwatershed.**

The income data shows that the Grosse Pointes and Lake Township are the wealthiest communities in the subwatershed. The cities of Roseville, Eastpointe, and Harper Woods have the lowest median household incomes. Generally, the communities that have the lowest median household incomes have the highest percentage of households living below the poverty level and show lower education levels while the communities with higher median household incomes show the opposite.

**Urban Neighborhood**

Image derived from maps.yahoo.com.

**Lake Township**

Image derived from maps.yahoo.com.

**Income Data**

The data for the map is on a census tract basis. The data in the table is on a community basis. This may lead to perceived discrepancies, although both are correct.

---

Inventory of the Subwatershed

Lake St. Clair Direct Drainage Subwatershed

10/31/2006
Table 2-7. Community income, poverty, and education levels.

<table>
<thead>
<tr>
<th>Community</th>
<th>Median Household Income ($</th>
<th>Households Below Poverty Level (%)</th>
<th>Pop. Receiving at least High Diploma (%)</th>
<th>Population Receiving at least 4-yr College Degree(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinton Township</td>
<td>$50,067</td>
<td>6%</td>
<td>85%</td>
<td>12%</td>
</tr>
<tr>
<td>Eastpointe</td>
<td>$46,621</td>
<td>7%</td>
<td>79%</td>
<td>8%</td>
</tr>
<tr>
<td>Grosse Pointe</td>
<td>$81,111</td>
<td>3%</td>
<td>97%</td>
<td>39%</td>
</tr>
<tr>
<td>Grosse Pointe Farms</td>
<td>$100,153</td>
<td>2%</td>
<td>98%</td>
<td>38%</td>
</tr>
<tr>
<td>Grosse Pointe Park</td>
<td>$80,485</td>
<td>4%</td>
<td>96%</td>
<td>29%</td>
</tr>
<tr>
<td>Grosse Pointe Shores</td>
<td>$114,863</td>
<td>4%</td>
<td>94%</td>
<td>32%</td>
</tr>
<tr>
<td>Grosse Pointe Woods</td>
<td>$78,558</td>
<td>3%</td>
<td>95%</td>
<td>31%</td>
</tr>
<tr>
<td>Harper Woods</td>
<td>$46,769</td>
<td>6%</td>
<td>85%</td>
<td>18%</td>
</tr>
<tr>
<td>Harrison Township</td>
<td>$51,892</td>
<td>5%</td>
<td>88%</td>
<td>12%</td>
</tr>
<tr>
<td>Lake Township</td>
<td>$97,278</td>
<td>6%</td>
<td>89%</td>
<td>28%</td>
</tr>
<tr>
<td>Roseville</td>
<td>$41,220</td>
<td>8%</td>
<td>76%</td>
<td>5%</td>
</tr>
<tr>
<td>St. Clair Shores</td>
<td>$49,047</td>
<td>4%</td>
<td>84%</td>
<td>12%</td>
</tr>
<tr>
<td>Southeast Michigan</td>
<td>$49,979</td>
<td>10%</td>
<td>83%</td>
<td>15%</td>
</tr>
</tbody>
</table>

1 - Includes only those individuals 25 years of age and older. Source: SEMCOG, 2004a.

Eastpointe, Harper Woods, Roseville, and St. Clair Shores have median household incomes that are slightly lower than Southeast Michigan as a whole, Clinton and Harrison Townships are slightly higher, and the other communities are significantly higher.

Median household income data is presented on a census tract basis, meaning it has less resolution than the census block level population information.

**Population Ethnicity**

Another population characteristic to consider is the ethnic composition of the population. Approximately, 93% of the subwatershed population is Caucasian. The non-Caucasian segment of the population consists mainly of African-American, Hispanic, Asian, and mixed ethnicities. The dialog boxes present the minority population as a percentage of the total on a municipal and catchment basis.

Only two subwatershed communities have a non-Caucasian population greater than 10% (Harper Woods at 14% and Lake Township at 11%). The Grosse Pointe catchment has the highest non-Caucasian population (8.3%). The Lake – South catchment has a non-Caucasian population percentage of 7.2% (which is also the subwatershed average) and the Lake – North catchment has a non-Caucasian population percentage of 6.2%

**Environmental Justice**

According to the Environmental Protection Agency’s (EPA) website (http://www.epa.gov/compliance/environmentaljustice/)

“Environmental Justice is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies. Fair treatment means that no group of people, including a racial, ethnic, or a socioeconomic group, should bear a disproportionate share of the negative environmental consequences resulting from industrial, municipal, and commercial operations or the execution of federal, state, local, and tribal programs and policies. Meaningful involvement means that: (1) potentially affected community residents have an appropriate opportunity to participate in decisions about a proposed
activity that will affect their environment and/or health; (2) the public's contribution can influence the regulatory agency's decision; (3) the concerns of all participants involved will be considered in the decision making process; and (4) the decision makers seek out and facilitate the involvement of those potentially affected.

In summary, environmental justice is the goal to be achieved for all communities and persons across this Nation. Environmental justice is achieved when everyone, regardless of race, culture, or income, enjoys the same degree of protection from environmental and health hazards and equal access to the decision-making process to have a healthy environment in which to live, learn, and work.”

Based on an examination of the economic and ethnicity information for the subwatershed, certain areas - low income and/or minority population centers - show potential to elicit environmental justice concerns. Because environmental justice requires and encourages these communities to be represented fairly by the WMP, the public involvement procedures, decision-making processes, and management decisions have been tailored to alleviate potential environmental justice concerns.

**Land Cover and Use**

As humans have settled the land, they have adapted it and altered it to suit their needs. This discussion documents how the land has changed over the last 170 years and how this impacts the subwatershed.

**Historical Land Cover**

Historically, much of the subwatershed was comprised of forests and swamps. The predominant ecosystem was the Beech-Sugar Maple Forest, while the Mixed Hardwood Swamp and Emergent Swamp were also present in considerable amounts. These productive natural land covers provided resources for settlers in the area and provided habitat for a diverse community of wildlife. Table 2-8 breaks down the land cover in 1830, when the land was part of the Michigan Territory. Figure 2-7 shows a map of the land cover (circa 1830) on a catchment basis.

**Table 2-8. Land cover in the subwatershed circa 1830.**

<table>
<thead>
<tr>
<th>Land Cover</th>
<th>Grosse Pointe</th>
<th>Lake - North</th>
<th>Lake - South</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prairie - Wet</td>
<td>---</td>
<td>0.42</td>
<td>0.04</td>
<td>0.46</td>
</tr>
<tr>
<td>Wetland – Open Water</td>
<td>&lt; 0.01</td>
<td>---</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Wetland – Scrub/Shrub &amp; Marsh</td>
<td>2.20</td>
<td>&lt; 0.01</td>
<td>0.65</td>
<td>2.85</td>
</tr>
<tr>
<td>Swamp - Hardwood</td>
<td>8.42</td>
<td>2.10</td>
<td>1.32</td>
<td>11.84</td>
</tr>
<tr>
<td>Swamp – Hardwood (Ash)</td>
<td>---</td>
<td>0.37</td>
<td>0.03</td>
<td>0.40</td>
</tr>
<tr>
<td>Wooded Area – Beech/Maple Forest</td>
<td>2.28</td>
<td>12.06</td>
<td>11.34</td>
<td>25.67</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>12.89</strong></td>
<td><strong>14.96</strong></td>
<td><strong>13.41</strong></td>
<td><strong>41.26</strong></td>
</tr>
</tbody>
</table>

Note: all units in square miles. Source: MIDGL, 2005.
Present Day Land Use

Permanent human settlement brought great change to the landscape as the land was altered for human benefit. Many of the forests were cleared and wetlands were drained to provide land for farming, settlement, and transportation. This and other changes such as urban development, dams, river relocation, channelization, and dredging significantly altered the landscape of the subwatershed to become what we now see today.

The landscape of today is vastly different from its pre-development conditions. Only 0.30 square miles of woodland and wetland exist; less than 1 percent of the woodland and wetland areas that existed in 1830.

Today, 71 percent of the subwatershed is used for single-family residences. Commercial and office use accounts for 9 percent and another 6 percent exists as institutional. Figure 2-8 shows these and other present day land uses throughout the subwatershed (note that to make the figure easier to interpret, the catchment boundaries are not shown). Table 2-9 breaks the land use down on a catchment basis.
Figure 2-8. Land use in the subwatershed – present day.
Table 2-9. Land use in the subwatershed – present day.

<table>
<thead>
<tr>
<th>Land Cover</th>
<th>Grosse Pointe</th>
<th>Lake - North</th>
<th>Lake - South</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Water (counted as wetland)</td>
<td>---</td>
<td>0.05</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>Woodland and Wetland</td>
<td>0.04</td>
<td>0.19</td>
<td>---</td>
<td>0.23</td>
</tr>
<tr>
<td>Developed Land – Open Space (Recreation)</td>
<td>0.78</td>
<td>0.37</td>
<td>0.46</td>
<td>1.61</td>
</tr>
<tr>
<td>Developed Land – Open Space (Grassland)</td>
<td>0.05</td>
<td>0.20</td>
<td>0.02</td>
<td>0.28</td>
</tr>
<tr>
<td>Developed Land – Residential (Multi-family)</td>
<td>0.20</td>
<td>0.76</td>
<td>0.69</td>
<td>1.65</td>
</tr>
<tr>
<td>Developed Land – Under Development / Other</td>
<td>0.01</td>
<td>0.08</td>
<td>---</td>
<td>0.01</td>
</tr>
<tr>
<td>Developed Land – Transportation / Utility</td>
<td>0.21</td>
<td>0.67</td>
<td>0.17</td>
<td>1.05</td>
</tr>
<tr>
<td>Developed Land – Industrial</td>
<td>&lt; 0.01</td>
<td>1.10</td>
<td>0.13</td>
<td>1.23</td>
</tr>
<tr>
<td>Developed Land – Commercial and Office</td>
<td>0.64</td>
<td>1.57</td>
<td>1.37</td>
<td>3.57</td>
</tr>
<tr>
<td>Developed Land – Institutional</td>
<td>0.84</td>
<td>0.83</td>
<td>0.67</td>
<td>2.35</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>12.89</strong></td>
<td><strong>14.96</strong></td>
<td><strong>13.41</strong></td>
<td><strong>41.26</strong></td>
</tr>
</tbody>
</table>

Note: all units in square miles. Source: SEMCOG, 2005.

Residential development is the dominant land use in all the catchments, with Grosse Pointe at 79 percent, Lake – South at 73 percent, and Lake – North at 61 percent. Commercial and office land use accounts for 5 percent of the Grosse Pointe catchment, 10 percent of the Lake – North catchment, and 10 percent of the Lake – South catchment.

Recreation and open space areas account for 6 percent of the land use in the Grosse Point catchment, 4 percent of the Lake – North catchment, and 4 percent of the Lake – South catchment. Additionally, there are no lands classified as woodland and wetland in the Lake – South catchment, less than 1 percent in the Grosse Pointe catchment, and slightly more than 1 percent in the Lake – North catchment.
Future Land Use

Figure 2-9 presents the projected future land use in the subwatershed based on community zoning and master plans, as compiled by SEMCOG (note that to make the figure easier to interpret, the catchment boundaries are not shown). Table 2-10 summarizes the project land use information.

Table 2-10. Land use in the subwatershed – future.

<table>
<thead>
<tr>
<th>Land Cover</th>
<th>Grosse Pointe</th>
<th>Lake North</th>
<th>Lake South</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Water (counted as wetland)</td>
<td>---</td>
<td>0.06</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>Wooded Area / Wetland / Open Space</td>
<td>0.47</td>
<td>0.50</td>
<td>0.41</td>
<td>1.37</td>
</tr>
<tr>
<td>Developed Land – Residential (Low Density)</td>
<td>2.71</td>
<td>0.59</td>
<td>0.01</td>
<td>3.32</td>
</tr>
<tr>
<td>Developed Land – Residential (Medium Density)</td>
<td>6.63</td>
<td>0.48</td>
<td>3.84</td>
<td>10.95</td>
</tr>
<tr>
<td>Developed Land – Residential (High Density)</td>
<td>1.35</td>
<td>9.15</td>
<td>6.70</td>
<td>17.20</td>
</tr>
<tr>
<td>Developed Land – Transportation / Utility</td>
<td>0.15</td>
<td>0.77</td>
<td>0.14</td>
<td>1.07</td>
</tr>
<tr>
<td>Developed Land – Industrial</td>
<td>---</td>
<td>1.23</td>
<td>0.15</td>
<td>1.37</td>
</tr>
<tr>
<td>Developed Land – Commercial and Office</td>
<td>0.54</td>
<td>1.40</td>
<td>1.56</td>
<td>3.51</td>
</tr>
<tr>
<td>Developed Land – Institutional</td>
<td>1.03</td>
<td>0.78</td>
<td>0.58</td>
<td>2.39</td>
</tr>
<tr>
<td>Total</td>
<td>12.89</td>
<td>14.96</td>
<td>13.41</td>
<td>41.26</td>
</tr>
</tbody>
</table>

Note: all units in square miles. Source: SEMCOG, 2005.

The projected future land use (for 2030) indicates that residential land use in the subwatershed will increase slightly to 76 percent. The Grosse Pointe catchment is projected to have a residential land use of 83 percent, the Lake – South catchment, 79 percent, and the Lake – North catchment, 68 percent.

Commercial and office land use is projected to remain relatively unchanged throughout the subwatershed, as well as institutional land use and industrial land use.

Open space and grassland is projected to decrease slightly throughout the subwatershed.

Land Use Types - Future

NON-DEVELOPED TYPES
- Open Water
  Rivers, lakes, drains, etc.
- Cultivated Land (Agriculture)
  Croplands, orchards, feeding operations, and housing in rural areas.

MIXED TYPES
- Wooded Area / Wetland / Open Space
  Not currently developed wooded and wetland areas; grasses, shrubs; fields, camp-grounds, marinas.

DEVELOPED TYPES
- Residential (Low Density)
  Generally single-family dwellings constructed on large parcels.
- Residential (Medium Density)
  Generally single-family dwellings that are not high- or low-density.
- Residential (High Density)
  Generally includes urban multiple- and single-family dwellings.
- Transportation / Utility
  Roads, utilities, facilities, etc.
- Industrial
  Industrial parks, etc.
- Commercial and Office
  Offices, business districts, malls, etc.
- Institutional
  Includes religious, educational, government, etc.

Institutional Land Use

Photo courtesy of Tetra Tech.
Figure 2-9. Land use in the subwatershed – future (year 2030).
**Land Cover / Use Trends**

Figure 2-10 illustrates that the land comprising the subwatershed was covered almost entirely by forest and swamp only 170 years ago. Since then, conversion of the land to agriculture, residential, and other development has reduced the woodland/wetland cover to only 0.7 percent. Continuing development in the subwatershed will result in the conversion of remaining woodlands, wetlands, and open spaces into residential development.

**Figure 2-10. Land cover/use comparison.**

**Public Land**

Public land is a valuable component of the land use within the watershed as it provides for easier implementation of watershed management practices (such as stormwater retrofits) and procedures. Public land uses in the watershed include road rights-of-way, parks and recreation areas, educational facilities, and other government properties.
Infrastructure

Associated with the people of the subwatershed and their inhabited land is an extensive infrastructure that supports the activities of human life. Those which have an impact on, or are impacted by, water and environmental quality are discussed.

Sewage Disposal

The collection and treatment of human waste is essential to protecting water quality. The majority of the subwatershed is provided this service through a sanitary sewer-to-waste water treatment plant (WWTP) system.

Sanitary Sewers

Sanitary sewers exist for the purpose of collecting wastewater generated by residences, businesses, and other facilities and routing it to a WWTP. The WWTP then treats the sewage to remove pollutants to regulatory levels before discharging the effluent into a nearby waterbody.

Combined Sewers

A variation of the sanitary sewer system which is common in older urban areas is the combined sewer system. This type of system is designed to convey both sanitary and stormwater for treatment at a WWTP. During dry weather, the flow in a combined sewer is composed entirely of sewage. During rain events, catch basins and downspout leads from buildings route stormwater runoff into the system which is then treated at a WWTP. However, these systems and the WWTPs are not sized to handle the flows generated by intense rain events. Flow from intense rain events may lead to a situation in which flow control devices in the system, or ‘regulators’, limit the flow to WWTP by allowing some of the mixed stormwater and sewage to overflow into nearby waterbodies (which is called a combined sewer overflow or ‘CSO’). Figure 2-11 (courtesy of Marist College) shows a schematic of this type of system.

Sanitary Sewer Overflows

In extreme circumstances, such as during heavy rainfall events where excess water enters the system, or when blockages in the system occur, the sanitary sewer system may overflow at a low point, causing untreated sewage to discharge to nearby waterbodies. Such occurrences are referred to as sanitary sewer overflows (SSOs). SSOs have not been permitted since 1977, but are often subject to MDEQ administrative consent orders. Current MDEQ policy is to work with communities to eliminate the occurrence of all SSO events.

There were 10 recorded SSOs at 3 locations releasing about 3.95 million gallons of raw or diluted sewage in the LSCW between July 2000 and July 2006. MDEQ also lists six SSOs that occurred at the Martin RTF in 2003 totaling 121.0 million gallons.

Source: MDEQ, 2000-2006

Figure 2-11. Schematic of a combined sewer system.
Sanitary and Combined Sewers in the Subwatershed

The sanitary and combined sewers in the subwatershed flow to the Detroit Water and Sewerage Department (DWS D) WWTP located in the City of Detroit, tributary to the Detroit River. During wet weather, the flow from the sewers in the Lake-North catchment and most of the sewers in the Lake-South catchment may enter the Martin Retention and Treatment Facility (RTF) RTF and/or the Chapaton RTF in St. Clair Shores if the flows in the system exceed the allowable discharge rate in the DWSD interceptor. Additionally, the flows from some of the combined sewers in the Grosse Pointe catchment and a small portion of Lake – South catchment may enter the Milk River RTF in Grosse Pointe Woods during wet weather. At any of these three locations, if the storage volume capacity is reached, additional flow is partially treated before being discharged to Lake St. Clair (at the Martin and Chapaton RTFs) or the Milk River (at the Milk River RTF).

These facilities, and the extent of current, and future (by the year 2030), sanitary and combined sewer coverage in the subwatershed, can be seen in Figure 2-12. Also displayed in the figure are the locations of two other CSO locations, one in Grosse Pointe Shores and the other in Grosse Pointe Farms. The Shores outfall is inactive and is no longer under permit. For the Farms outfall, corrective actions have been taken towards eliminating all overflows. However, a minor overflow event in 2005 and a larger one in 2006 (now technically considered SSOs) have led the city engineers to conjecture that up to four storm sewers still discharge into the sanitary sewer interceptor instead of discharging to Lake St. Clair. Once the problems have been corrected, the outfall will be removed the MDEQ listing of CSO locations upon expiration of the permit. Table 2-11 summarizes the sanitary and combined sewer coverage information on a catchment basis.

Additional infrastructure in the subwatershed includes the Bon Heur and Hoffman Pump Stations in St. Clair Shores and the Violet Pump Station in Roseville.

Table 2-11. Sewage disposal in the subwatershed, by catchment.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Sanitary Sewer Service (sq. mi.)</th>
<th>Combined Sewer Service (sq. mi.)</th>
<th>Total (sq. mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current</td>
<td>Future</td>
<td>Current</td>
</tr>
<tr>
<td>Grosse Pointe</td>
<td>4.90</td>
<td>4.90</td>
<td>7.99</td>
</tr>
<tr>
<td>Lake – North</td>
<td>14.84</td>
<td>14.96</td>
<td>---</td>
</tr>
<tr>
<td>Lake - South</td>
<td>5.66</td>
<td>5.66</td>
<td>7.75</td>
</tr>
<tr>
<td>Total</td>
<td>25.40</td>
<td>25.52</td>
<td>15.74</td>
</tr>
</tbody>
</table>

Source: GIS data courtesy of SEMCOG.

Currently, over 99% of the land area in the subwatershed is served by sanitary or combined sewers. The Grosse Pointe catchment is 62% combined sewers and the Lake – South catchment is 58% combined sewers. Only 0.12 square miles of the subwatershed (all in the Lake – North catchment) is not currently serviced and this area is expected to be converted to sanitary sewers by 2030.

CSO Data 7/00 – 7/06

<table>
<thead>
<tr>
<th>Outfall Location: Lake St. Clair</th>
<th>Number of CSOs:</th>
<th>Total CSO Volume:</th>
<th>Last Occurrence:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapaton RTF</td>
<td>27*</td>
<td>918.5 MG</td>
<td>July 26, 2006</td>
</tr>
<tr>
<td>Grosse Pointe Farms CSO</td>
<td>3*</td>
<td>1.6 MG</td>
<td>Sept. 9, 2001</td>
</tr>
<tr>
<td>Martin RTF</td>
<td>46*</td>
<td>1,913.3 MG</td>
<td>June 22, 2006</td>
</tr>
<tr>
<td>Milk River RTF</td>
<td>52</td>
<td>1,162.0 MG</td>
<td>July 26, 2006</td>
</tr>
</tbody>
</table>

Source: MDEQ, 2000-2006

* - Each count included a small number of CSOs with insufficient data.

** - Some overflows at the Nine Mile Road Bypass are listed under Chapaton, while others are listed under Martin.
Hydrologic / Hydraulic Infrastructure

In order to best utilize the land and water, modifications are often made to drainage patterns and waterbodies. The following discussion addresses some of these issues.

Water Drainage

Water drainage alterations typically occur when open channel drains are modified and enclosed and when storm sewers are constructed. Under Michigan law, open-channel waterways fall under the jurisdiction of the county-level government if they are designated as ‘county drains’. This jurisdiction includes existing as well as newly constructed waterways. The extent of county-level government jurisdiction over the waterways of the subwatershed is shown in Figure 2-13.
Maintained drains are ‘cleaned’ as needed to ensure proper hydraulic functioning. Many have also been modified to maximize hydraulic capacity (such as being widened or straightened), to pass under infrastructure (such as being routed through a culvert or enclosed), or to include protective measures (such as armored banks or check dams). MDEQ approval is not required for actions affecting drains established before 1972.

In locations where extensive open-channel drainage networks are not feasible (such as urbanized areas), storm sewers have been built. These exist for the purpose of collecting runoff from the land, utilizing catch basins and other devices, during precipitation and/or snowmelt events and routing it to waterbodies. In some cases, development may interrupt natural drainage to the point that pump stations are required to route water to its natural outlet. Because these sewers discharge directly to waterbodies, they have the potential to introduce a variety of untreated pollutants.

**Storm Sewer Coverage**

While no comprehensive storm sewer coverage data is readily available for analysis, storm drainage systems typically cover areas where sanitary sewers exist. This includes urban areas and other areas where surface drainage to natural waterbodies is not feasible.

**Storm Sewer Catch Basin**

![Storm Sewer Catch Basin Image](image)

Courtesy of MCPWO
All of the communities in the subwatershed own and operate some type of storm sewer system. In addition to those directly operated by the municipalities, there are storm sewer systems associated with county- and state-owned roads under the jurisdiction of the county road commission or the Michigan Department of Transportation (MDOT). Also, there may exist other lands such as public school district, government, or condominium subdivision properties (e.g. homeowner associations) that are separate entities and have storm sewers that are within a community’s system. Any separate storm sewer system within a community’s system is called a ‘nested system’. These nested systems and associated jurisdictional agreements are listed in Chapter 1. The NPDES Phase II permit application submitted by each community contains a listing of all known storm sewer discharge points (outfalls) owned by the entity.

**Waterbody Modifications**

The nature of development in the subwatershed over the years has resulted in many of the open channels being enclosed. Exceptions include some open drains in the Lake – North catchment and the Milk River in the Lake – South catchment (although it is open only in the City of St. Clair Shores). Numerous canals have also been constructed along the Lake St. Clair shore (mostly in St. Clair Shores).

**Water Usage**

Modifications are not the only way that hydrology and hydraulics are affected. Direct water usage also has the potential to impact these. Additionally, domestic water uses are also affected by the quality of the water.

There is one surface water supply intake in the subwatershed. It is the intake for the Grosse Pointe Farms water treatment plant, which is a public water supply serving Grosse Pointe and Grosse Pointe Farms. The city of Highland Park (outside of the LSCW) also shares this intake to supply water to its water treatment plant. The location of the intake can be seen in Figure 2-14. Although the water is treated before distribution, the quality of the water can be affected by the water quality in Lake St. Clair. The other communities are serviced by the DWSD water supply system which gets its water from surface intakes on the Detroit River, which is outside of the subwatershed.

In addition to surface water, groundwater is also used for human purposes (including drinking and irrigation). Although often thought of as separate resources, groundwater and surface water are inextricably linked. As discussed previously, groundwater and surface water interface in most waterbodies and wetlands. As such, poor quality surface water can lead to poor quality groundwater, and vice-versa.

The most recent data indicates that there are 14 private water wells in the subwatershed. These are also shown in Figure 2-14. Although the water is treated before distribution, the quality of the water can be affected by the water quality in Lake St. Clair. The other communities are serviced by the DWSD water supply system which gets its water from surface intakes on the Detroit River, which is outside of the subwatershed.

Because the location data associated with the well database is of dubious accuracy, the location of many of the wells can only be taken as a general location.

Currently, no wellhead protection plans from communities within the subwatershed are on file with the State of Michigan. These plans are meant to minimize the potential for groundwater contamination.
Pollution Control Facilities / Potential Discharge Points

Within the subwatershed, there are five facilities that are permitted to discharge certain pollutants through the NPDES. These are the Martin and Chapaton RTFs in the Lake – South catchment and the Milk River RTF, Grosse Pointe Shores CSO, and Grosse Pointe Farms CSO in the Grosse Pointe catchment. These were discussed previously in this section and are identified in Figure 2-12. There are also numerous industrial stormwater discharge permits in the subwatershed, but these are not mapped.

Pollutants may be released from sites called “brownfields”. These are typically abandoned facilities including gas stations, commercial business, and industrial sites. Two brownfields exist in the Grosse Pointe catchment, as displayed in Figure 2-15.

Additionally, one waste transfer station is present in the Lake – North catchment (also in Figure 2-15).

Pollution Control / Discharge Data Sources

- EPA NPDES
  http://cfpub.epa.gov/npdes/
- EPA NPL
  http://www.epa.gov/superfund/sites/npl/mi.htm
- MDEQ Brownfield/USTfield database
  http://www.michigan.gov/deq/0,1607,7-135-3311_4110_23244-63468--,00.html
- MDEQ Part 201Site Database
  http://www.deq.state.mi.us/part201ss/
**Pollution Control Legislation**

The MDEQ permits and monitors most pollution control facilities under authority given to them under Public Act 45 of 1994, specifically:

- LUSTS – sections 211 and 213;
- Solid Waste – section 115; and
- Hazardous Waste – section 111;

in addition to numerous other sections which relate to these and other types of sites, including incentives for cleanup at contaminated locations (sections 193, 195, and 196).

**Aerial View of the South Macomb Disposal Authority Transfer Station**

The MDEQ lists contaminated sites (known as Part 201 sites) where there has been a release of a hazardous substance in an amount that exceeds the established state cleanup standard for residential properties. There are currently 5 of these sites in the subwatershed (4 in the Lake – South catchment, and 1 in the Lake – North catchment).

The MDEQ regulates hazardous waste generators (known as Part 111 sites). There is one of these in the subwatershed, City Environmental, Inc., in the Lake – North catchment.

The MDEQ is the permitting agency for above and below ground storage tanks. The locations of the 355 tanks in the subwatershed are shown in Figure 2-16.

Some of the tanks in the subwatershed have leaked in the past or are currently leaking. There are currently 79 open MDEQ inquiries into leaking underground storage tanks (LUSTs). Summarized by catchment, there are 33 in the Lake – South, 30 in the Lake – North, and 16 in the Grosse Pointe.
While not quantified here, there have also been numerous LUSTs in the past which have been satisfactorily remedied by MDEQ.

Based on the preceding pollutant source location information, point sources are of most concern in the Lake – North catchment because it has the most identified point sources.

**Transportation Infrastructure**

Transportation infrastructure has the potential to impact water resources through the effects of impervious surfaces and pollutant emissions/spills. This discussion is limited to facilities related to land and sea travel. These facilities are mapped in Figure 2-17 and summarized in Table 2-12.

Table 2-12. Transportation infrastructure, by catchment.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Road Miles*</th>
<th>Railroad Miles</th>
<th>Marinas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>243</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Lake – North</td>
<td>270</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Lake – South</td>
<td>284</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>797</strong></td>
<td><strong>2</strong></td>
<td><strong>10</strong></td>
</tr>
</tbody>
</table>

* - Each set of lanes for divided roads is counted in the total.

By far the most ubiquitous transportation facilities in the subwatershed are roads. There are over 797 miles of roads in the subwatershed. Road types range from property access roads to limited access Interstate highways. For clarity, only Interstate, U.S., and Michigan highways and arterial and collector roads are shown in Figure 2-17. I-94 and I-696 are completely limited access highway passing through the subwatershed. M-3, M-97, and M-102 are completely local access surface roads. Although not shown on the figure, there are numerous bridges/crossing structures in the subwatershed that make up an important component of transportation facilities because of their maintenance-intensive nature.

The other surface transportation type of facility in the subwatershed are railroads of which there are about 2 miles of one railroad line. This railroad is part of a Canadian National line (formerly Grand Trunk Western) and crosses the western portion of the Lake – North catchment.
Other facilities associated with railroads in the subwatershed (not on map) include depots and bridges. Additionally, there are two abandoned rights-of-way in the subwatershed, a line running north-south through St. Clair Shores and another running southwest-northeast through Eastpointe and Roseville. These rights-of-way are also not shown in Figure 2-17.

In terms of water travel, there are seven marinas identified in the Lake – South catchment. Crescent Marina, the Grosse Pointe Yacht Club, and the Grosse Pointe Marina are present in the Grosse Pointe catchment but additional data was not available for this portion of the subwatershed. There are few stream miles in the subwatershed and it is not readily known whether or not any of these are considered ‘navigable’.

**Recreation Resources**

This final infrastructure category includes facilities where WMP-related education activities may be fruitful, includes places that should be preserved, and highlights locations where people interact with their environment.

**Historical and Cultural Sites**

Historical and cultural resources in the subwatershed define an essential component of the character of the people. They define traditional and current values and may present unique opportunities for watershed management planning activities. The designated historical facilities include government buildings, schools, religious buildings, residences, and libraries. The cultural resources include existing schools, markets, museums, shopping malls, and old fashioned downtowns.

These resources are summarized in Table 2-13. Figure 2-18 displays the location of these resources. Note that cultural site information was not available for the Wayne County portion of the subwatershed, and historical site information did not include geographical information in Wayne County.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Historical Sites</th>
<th>Cultural Sites</th>
<th>Public School Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>15*</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Lake – North</td>
<td>3</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Lake – South</td>
<td>5</td>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>3</td>
<td>103</td>
</tr>
</tbody>
</table>

Source: GIS data from Macomb County and SEMCOG.

* Wayne County data from Michigan Historical Markers.

There are 23 historical sites, 3 cultural sites, and 103 public school facilities in the subwatershed. The Grosse Pointe catchment has the most historical sites with 15; the Lake – South catchment has the most cultural sites with 2, and the most public school facilities with 39. Please contact the local or county government to obtain a list of specific sites and their addresses.

**Navigable Waters**

The word ‘navigable’ is a legal term defining a waterbody as public. However, a waterbody being boat-able does not necessarily make it navigable.

The field of water law is complex and develops through both legislative and judicial action. There is a great deal of uncertainty regarding the public or private status of most of the state’s streams, particularly the smaller ones.

Source: Francis, 2005.

**Edsel & Eleanor Ford House**


The home is preserved and open to the public through the generosity of Eleanor Clay Ford. It remains as a witness to the past, as part of the history of the area and as an enrichment in the lives of future generations.

The Fords built this, their dream home, as a place where they could integrate their family’s activities and interests with global business responsibilities and concern for the local community. The home, its contents and grounds, along with the legacy left by the Fords, all reflect the important role that design excellence played in the family’s lives.

Nature Areas and Parks

Given the public ownership of most recreation areas, they are ideal places to pursue the conservation of natural areas and implement other restoration or water quality protection measures.

Table 2-14. Nature area / park summary.

<table>
<thead>
<tr>
<th>Catchment</th>
<th># of Areas</th>
<th>Total Area</th>
<th>Trail Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>13</td>
<td>157</td>
<td>0</td>
</tr>
<tr>
<td>Lake – North</td>
<td>12</td>
<td>99</td>
<td>11</td>
</tr>
<tr>
<td>Lake – South</td>
<td>17</td>
<td>120</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>376</td>
<td>16</td>
</tr>
</tbody>
</table>

1 - Number for each catchment includes portions of parks that cross boundaries. Total reflects total number in the subwatershed. 2 - Does not include trails or golf courses.

The largest recreation areas in the subwatershed are listed in Table 2-15. Their locations are shown in Figure 2-19.
Table 2-15. Largest nature areas / parks in the subwatershed.

<table>
<thead>
<tr>
<th>Recreation Area</th>
<th>Acres</th>
<th>Municipality</th>
<th>Catchment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lake Front Park</td>
<td>55</td>
<td>St. Clair Shores</td>
<td>Lake – South</td>
</tr>
<tr>
<td>2. Ghesquiere Park</td>
<td>46</td>
<td>Grosse Pointe Woods</td>
<td>Grosse Pointe</td>
</tr>
<tr>
<td>3. Kyte Monroe Park</td>
<td>32</td>
<td>St. Clair Shores</td>
<td>Lake – North</td>
</tr>
<tr>
<td>4. Patterson Park</td>
<td>31</td>
<td>Grosse Pointe Park</td>
<td>Grosse Pointe</td>
</tr>
<tr>
<td>5. Memorial Park</td>
<td>21</td>
<td>Eastpointe</td>
<td>Lake – South</td>
</tr>
<tr>
<td>6. Spindler Park</td>
<td>21</td>
<td>Eastpointe</td>
<td>Lake – South</td>
</tr>
<tr>
<td>7. Herman Brys Park</td>
<td>18</td>
<td>St. Clair Shores</td>
<td>Lake – South</td>
</tr>
<tr>
<td>8. Kennedy Park</td>
<td>18</td>
<td>Eastpointe</td>
<td>Lake – South</td>
</tr>
<tr>
<td>9. Memorial Park</td>
<td>15</td>
<td>Roseville</td>
<td>Lake – North</td>
</tr>
<tr>
<td>11. Gerald Schroeder Park</td>
<td>13</td>
<td>Grosse Pointe Shores</td>
<td>Grosse Pointe</td>
</tr>
<tr>
<td>12. Huron Park</td>
<td>12</td>
<td>Roseville</td>
<td>Lake – South</td>
</tr>
<tr>
<td>13. Thomas Dooley Park</td>
<td>11</td>
<td>Roseville</td>
<td>Lake – North</td>
</tr>
<tr>
<td>14. Huron Park</td>
<td>10</td>
<td>Roseville</td>
<td>Lake – South</td>
</tr>
<tr>
<td>17. Veteran’s Memorial Park</td>
<td>9</td>
<td>St. Clair Shores</td>
<td>Lake – North</td>
</tr>
<tr>
<td>18. Municipal Pier</td>
<td>8</td>
<td>Grosse Pointe Farms</td>
<td>Grosse Pointe</td>
</tr>
<tr>
<td>20. Lions Park</td>
<td>6</td>
<td>Roseville</td>
<td>Lake – North</td>
</tr>
</tbody>
</table>

References


Recreational Use of Waters for Fishing

The waterways in the subwatershed are open all year for fishing with an 8-inch minimum size limit and a 5 fish daily possession limit, no more than 3 of which may be 15 inches or longer.

Welsh Park

Source: SCS, 2005.

Last accessed: July 7th, 2005.
Inventory of the Subwatershed

Lake St. Clair Direct Drainage Subwatershed


Pictures


Colorado State University [CSU]. “Meandering River Channels”. Via:


Friends of Alewife Reservation [FAR]. Website. http://www.friendsofalewifereservation.org/


3. Documented Subwatershed Conditions

Introduction

The previous chapter discussed the natural environment, the human population, and their infrastructure in the subwatershed. This chapter discusses how humans and their infrastructure impact the natural environment, by:

- Discussing, in general terms, what human activities impact the environment and what the effects are;
- Defining the indicators used to assess the health of the environment;
- Briefly discussing past pollution sources and trends;
- Summarizing historical and current reports of water quality;
- Presenting the results of some preliminary assessments used to quantify the health of the environment;
- Discussing the current environmental protection practices implemented by the communities comprising the subwatershed; and,
- Presenting the impairments to waterbodies based on the findings of the Michigan Department of Environmental Quality (MDEQ).

Environmental Impacts of Human Activity

There are numerous ways in which people and infrastructure influence the natural environment. This section presents a general discussion of these impacts. More detailed information can be found later in the chapter.

Impervious Surface

The conversion of natural landscapes into urban landscapes (i.e., rooftops, streets, parking facilities) results in surfaces impervious to the infiltration of stormwater. This causes increase in: 1) the frequency of rainwater runoff reaching waterbodies; 2) the total volume of runoff, and 3) the peak flow rate of runoff. This is illustrated in Figure 3-1.

Figure 3-1. Effects of urbanization on runoff.

Changes in runoff characteristics cause similar changes in the discharge of receiving waterbodies (e.g. increased flow volume, increased peak flows). Consequently, channels experience more bankfull flood events each year and are exposed to erosive velocities for longer intervals (which modify channels and increase sediment load). Since impervious cover prevents rainfall from infiltrating into the soil, less flow is available to recharge groundwater. Consequently, during extended periods without rainfall, baseflow levels are often reduced.

Impervious surfaces also generate runoff that carries increased sediments, nutrients, and other pollutants and cause additional water quality problems such as increased water temperature, excess plant and algal growth, and dissolved oxygen depletion.

Because of the effects of imperviousness, the percent of impervious surface coverage in a watershed, or subwatershed, can be used as an indicator to predict the severity of differences in the character of urban and natural basins. Generally speaking, higher levels of impervious surface coverage lead to adverse effects in the physical, chemical, and biological integrity of the waters (Schueler, 1994).

**Alteration of the Riparian Corridor**

Development that alters the riparian corridor (i.e. land adjacent to a waterbody) exacerbates the problems associated with impervious surfaces by reducing or removing the soil and vegetation that act to filter pollutants, mitigate temperatures, and slow runoff rates. Additional problems include:

- The removal of woody growth (which eventually dies and falls into the waterbody) eliminates an important microbiological food source and near-shore fish habitat;
- Development along streambanks and shorelines, which fragments riparian habitat; and
- Buildings and structures occupying volume that reduces the amount of flood storage available.

**Streambank / Shoreline / Waterbody Modifications**

Modifications to streambanks, shorelines, and the waterbodies themselves range from passive actions that are inconsequential as isolated events and easily repairable to specific activities that are very serious in nature and hard to reverse. A range of activities is listed below (Waters, 1995):

- Ad hoc human trails down or along banks tend to kill vegetation and expose bare soils that can subsequently be more easily eroded. These include walking, biking, off-road vehicle (ORV) trails, and roads;
- Removing deep-rooted vegetation on or near the banks or shoreline makes the soil more prone to erosion from high flow rates or intense wave action;
- Open pit mining and sand/gravel extraction operations in or near a waterbody alter the natural channel and banks resulting in increased erosive activity as the stream attempts to attain equilibrium;
- Meanders are important components of the energy balance in a stream, but historical practice has been to straighten channels to provide for quick removal of water to prevent flooding. Removing or reducing the bends of a stream shortens the effective flow length of the channel, thus increasing the slope. This causes water to flow faster and intensifies erosion in the channel near the modification and

**Impervious Surfaces and Storm Sewers**

While impervious surfaces cause numerous hydrologic problems, these are often exacerbated by the presence of enclosed storm sewers which introduce additional hydraulic problems (see Chapter 2).

---

**Lake St. Clair – Pier Park Beach and nearby shore, Grosse Pointe Farms**


**Example of a Concrete Shore**

Source: Shoreline Features, 2005.
increases sedimentation further downstream, as the stream seeks to naturally create new meanders;
- Introducing bridges, culverts, break walls, hard-engineered shorelines, and armored streambanks serve both to eliminate terrestrial and aquatic habitat and deflect wave energies that may exacerbate erosion problems elsewhere. Problems are magnified when these type of structures are poorly designed, constructed and/or maintained;
- Altering the channel by installing concrete lining or enclosures removes all natural processes and protections, creating a reach that is inhospitable to life and unable to protect itself from pollution;
- Creating artificial drainage promotes sedimentation, contributes to the degradation of wetlands, reduces water storage, and alters drainage patterns (Francis, 2005);
- Constructing dams which alter flow regimes, block fish passage, fragment aquatic communities, and change temperature profiles in the water column (Francis, 2005); and
- Inadequate bank protection during in-stream construction activities leaves the banks susceptible to erosion.

Over-development
Development is an important component of human economic and cultural growth. However, unmanaged development (especially development in sensitive areas such as wetlands) has the potential to cause a number of locally irreversible situations (in addition to those discussed previously):
- Natural feature and wildlife habitat loss from land use changes;
- Creation of unnatural habitat that encourages concentrated populations (e.g. geese) and creates animal waste contamination;
- Vegetative cover / tree canopy loss leading to heat island effects;
- Loss of soils, due to poor construction practices and streambank erosion;
- Loss of aquatic habitat, due to poor water quality and enclosing open channel waterways; and
- Loss of groundwater services (e.g., recharge, pollutant removal).

Pollution Control Facilities
Pollution control facilities generally perform in ways to prevent environmental pollution. However, when these facilities do not function properly they tend to release elevated amounts of pollutants. Some examples include:
- Sanitary sewer systems which cannot handle excessive flow rates and discharge sewage to waterbodies (sanitary sewer overflows);
- Sanitary sewer leads from residences or businesses that are improperly connected to storm sewers (illicit connections);
- Landfills that do not properly control leachate and/or runoff and allow flow to reach nearby waterbodies (illicit discharges); and
- Failing septic systems that perform little or no treatment on sewage (illicit discharges).

Historical Policies and Practices
Practices and policies from earlier times continue to affect water quality, such as:
- The use of combined sewer systems that are designed to discharge diluted sewage into waterways during wet weather conditions;
• The unregulated discharge of industrial pollutants into waterways which pollute sediments and can linger for generations;
• The under-regulated discharge of airborne pollutants which can deposit themselves in waterways (e.g., mercury and acid rain); &
• The unregulated disposal of refuse in non-engineered ‘dumps’.

Non-point Source Pollution
Non-point source pollution is typically generated from dispersed sources that can collectively create problems, such as: agricultural runoff (animal waste, fertilizers, pesticides); trash/debris (which tends to accumulate at specific locations); and runoff from roads (oils and grease, salt, sediments).

Intentional Actions
High levels of pollutants also can be intentionally introduced into the environment. For example, some residents may unlawfully discharge substances such as paint or motor oil into storm drains or unscrupulous businesses may discharge barrels or truckloads of pollutants into waterways to avoid the costs associated with proper disposal of the wastes.

Unintentional Consequences
Many of the previously discussed problems are unintended consequences of human activities. Some other unintentional consequences of human activity that have a detrimental environmental effect include:

• The introduction of non-native species - Ballast water from ships has been the source of many non-native species found in the Great Lakes. Also, people import plants or animals from other parts of the world and may accidentally or intentionally release them into the wild. Some of the non-native species may flourish in their new habitat and wreak havoc on local eco-systems. These are usually referred to as ‘invasive’ species;

• Climate change – This consequence of human activity results from mankind’s dependence on fossil fuels in such things as automobiles and power plants. By-products of fuel consumption produce compounds that cumulatively trap heat in the earth’s atmosphere resulting in changing weather patterns (temperature and precipitation) and altering habitats. Although there is scientific debate about the extent of climate change caused by human activity, its potential consequences require acknowledgement;

• Extinct and endangered species – While extinction is a process that occurs in the natural environment, activities such as over-development which destroy habitat and over-hunting or over-fishing certain species result in the endangerment, extirpation, or extinction of these species;

• Flooding – Any number of modifications to land cover or waterbodies may increase the potential for flooding frequency or magnitude. This includes many flood control measures which often have the effect of sparing flooding in one location for additional flooding in another; &

• Other – A complete list is impossible, but some examples include:
  o The use of motor boats may result in the discharge of pollutants into waters from engine exhaust;
  o The use of propellers in shallow areas can disrupt benthic habitat and organisms and may stir up settled pollutants; and
  o Dredging in waterbodies severely impacts benthic habitat and organisms and may impact hydraulic characteristics.
Measuring Impacts: Water Quality Metrics

There are several methods available for assessing environmental impacts. An acceptable assessment practice involves comparing measured pollutant levels or other qualitative indicators against regulatory and other scientifically valid standards or values. This gives a glimpse into the relative health of a waterbody and this data, when compared over time, can be used to gauge trends in water quality. A number of quantifiable and qualitative standards and indicators are discussed in this section to provide a background against which to consider the water quality discussion presented later in the chapter. These have also been considered in the development of the short-term objectives and long-term goals for the subwatershed in addition to the methods for evaluating the effectiveness of the plan.

Water Quality Standards

The Michigan Department of Environmental Quality (MDEQ) has defined a number of water quality standards (WQS) that define the minimum requirements to which the waters of the state are to be managed (Michigan, 2006). The general WQS\(^1\), along with specifically regulated pollutants, are presented in Table 3-1.\(^2\).

The WQS are intended to:
- Protect health and public welfare;
- Enhance and maintain the quality of water;
- Protect the state’s natural resources; and
- Meet the requirements of state and federal law (including international agreements).

Table 3-1. Water quality standards.

<table>
<thead>
<tr>
<th>Rule #</th>
<th>WQS</th>
<th>Specific Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Physical Characteristics</td>
<td>Turbidity, Color, Oil films, Floating solids, Foams, Settleable solids, Suspended solids, Deposits</td>
</tr>
<tr>
<td>51</td>
<td>Dissolved Solids</td>
<td>General dissolved solids, Chlorides</td>
</tr>
<tr>
<td>53</td>
<td>Hydrogen Ions (pH)</td>
<td>Acids, Bases</td>
</tr>
<tr>
<td>55</td>
<td>Taste / Odor Producing</td>
<td>Substances</td>
</tr>
<tr>
<td>57</td>
<td>Toxic Substances</td>
<td>Arsenic, Cadmium, Chromium, Copper, Cyanide, Dieldrin, Endrin, Lindane, Mercury, Nickel, Parathion, Pentachlorophenol, Zinc, others as listed (including PCBs) or determined based on processes listed in rule</td>
</tr>
<tr>
<td>58</td>
<td>Radioactive Substances</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Plant Nutrients</td>
<td>Phosphorus, others as determined by rule</td>
</tr>
<tr>
<td>62</td>
<td>Microorganisms</td>
<td>Escherichia coli, Fecal coliforms, others as determined by rule</td>
</tr>
<tr>
<td>64, 65</td>
<td>Dissolved Oxygen</td>
<td></td>
</tr>
<tr>
<td>69, 70, 72, 73, 75</td>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Designated Uses</td>
<td>-- refer to following discussion</td>
</tr>
</tbody>
</table>

Source: Michigan, 2006. Note: The WQS are subject to change at any time.

\(^1\) Only those directly related to pollutants are presented. There are also numerous procedural WQS (such as the anti-degradation policy) that define the applicability of standards and detail policies related to their interpretation.

\(^2\) The regulated levels for each pollutant are defined in the appropriate rule. In some instances, the regulated level is not explicit and must be determined based upon a specified calculation method. Refer to the standards for more detailed information.
Designated Uses
Designated Uses are an important subset of MDEQ’s WQS. They define recognized important uses for waterbodies that are regulated by the state. The Designated Uses are:

- Agricultural Water Supply
- Public Water Supply
- Other Aquatic Life / Wildlife
- Coldwater Fisheries (specifically identified waterbodies only)
- Total Body Contact (May 1st – October 31st)
- Partial Body Contact

One of the first things to come to mind in terms of the quality of water is its use for drinking. This is an extremely important use because a clean source of drinking water, free from contaminants, is vital to human health. Communities in the subwatershed use both surface water and groundwater for drinking water supplies. Even though the designated uses apply specifically to surface waters, the uses also help protect groundwater drinking supplies which are often affected by surface water conditions.

Contaminants in water can also affect human health when the water is used to irrigate food sources, when fish in these waters are eaten, or when we come in contact with these waters.

While human health is the most important reason for protecting these resources, the designated uses are also intended to protect wildlife, commerce, and recreation. For example:

- The ‘Warmwater and Coldwater Fisheries’ uses also ensure healthy fish populations, increase recreational enjoyment of fishing, and ensure a thriving fishing industry (which results in fishing-related consumer spending, travel, and tourism);
- The ‘Industrial Water Supply’ use ensures that businesses have an inexpensive and sustainable process water supply that helps keep them competitive and providing jobs to Michigan’s citizens; and
- The ‘Navigation’ use ensures that the state’s waterways are passable and the ‘Body Contact’ uses ensure that people can safely recreate (e.g. wade, swim). These uses contribute to the lure of many travelers vacationing during the summer.

The coldwater fishery use does not apply to any waters in the subwatershed as none have been designated as such by the MDEQ.

Waterbody Status
In the framework of the WQS, those waterbodies with identifiable or foreseeable problems are classified as such:

- **Threatened** waterbodies currently meet all WQS, but there is reason to expect (e.g. declining water quality trends) that WQS will be violated in the future; and
- **Impaired** waterbodies do not fully meet WQS (i.e., do not fully support their designated uses).

---

Example Pollutants / Factors Affecting Designated Uses

<table>
<thead>
<tr>
<th>Designated Uses</th>
<th>Pollutants / Factors Affecting Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Water Supply</td>
<td>Hydrology (too little flow)</td>
</tr>
<tr>
<td></td>
<td>Excess nutrients</td>
</tr>
<tr>
<td></td>
<td>Toxic contaminants</td>
</tr>
<tr>
<td>Industrial Water Supply</td>
<td>Hydrology (too little flow)</td>
</tr>
<tr>
<td></td>
<td>Suspended solids</td>
</tr>
<tr>
<td>Public Water Supply</td>
<td>Excess nutrients (nitrates)</td>
</tr>
<tr>
<td></td>
<td>Pesticide contaminants</td>
</tr>
<tr>
<td>Warm Water Fishery</td>
<td>Sediment</td>
</tr>
<tr>
<td></td>
<td>Hydrology (flow variability)</td>
</tr>
<tr>
<td></td>
<td>Dissolved oxygen (too little)</td>
</tr>
<tr>
<td>Cold Water Fishery</td>
<td>Sediment</td>
</tr>
<tr>
<td></td>
<td>Hydrology (flow variability)</td>
</tr>
<tr>
<td></td>
<td>Dissolved oxygen (too little)</td>
</tr>
<tr>
<td>Other Aquatic Life / Wildlife</td>
<td>Sediment</td>
</tr>
<tr>
<td></td>
<td>Pesticides</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
</tr>
<tr>
<td>Partial Body Contact</td>
<td>Pathogens</td>
</tr>
<tr>
<td></td>
<td>Nutrients</td>
</tr>
<tr>
<td>Total Body Contact</td>
<td>Pathogens</td>
</tr>
<tr>
<td></td>
<td>Nutrients</td>
</tr>
<tr>
<td>Navigation</td>
<td>Obstructions</td>
</tr>
</tbody>
</table>

Additional Indicators

There are other indicators of water quality that are not necessarily defined as regulatory standards. These additional indicators also give insight to the health of a given waterbody and may be referenced in determining the status of designated uses (Rule 100). Additional indicators may include: alkalinity/hardness, conductivity, transparency, fecal streptococcus levels, physical obstructions, sediment conditions, contaminants in fish and other organisms, fish populations, fish taste, macroinvertebrate communities, habitat conditions, and chlorophyll/algae.

The U.S. Environmental Protection Agency’s Areas of Concern (AOC) program references a number of beneficial uses, the status of which are used to gauge the quality of associated waters (EPA, 2005):

- Aesthetics;
- Acceptable fish/wildlife taste;
- Open beaches;
- Healthy benthos conditions;
- No fish tumors/deformities;
- Healthy fish/wildlife habitat;
- Healthy phytoplankton/zooplankton populations;
- No dredging-restrictive contaminants in sediment;
- No eutrophication/controlled algae populations;
- No taste/odor problems or other drinking water restrictions;
- Healthy fish/wildlife populations;
- No contaminants in fish/wildlife;
- No costs incurred for agriculture and industrial water usage; and
- No bird/animal deformities or reproductive problems.

Pollution Sources and Trends

The historical lack of pollution control technologies in the early 20th Century resulted in numerous unregulated discharges by industries and municipalities to waters tributary to Lake St. Clair. While technologies slowly improved, the number of industries in the Clinton River watershed alone (a major drainage area to Lake St. Clair) rose from 60 to over 1,800 between the years 1940 and 1980 (Francis, 2005). Although the previous, and some of the following, information presented in this section is relative to the Clinton River, it is still relative to this plan as impacts on the Clinton River also affect Lake St. Clair and are indicative of pollution sources and trends throughout the Lake St. Clair sub-basin.

The passage of the Clean Water Act in 1972 initiated municipal and industrial projects that have lead to point source pollution reduction over the past thirty years. Industry and municipalities implemented improved treatment technologies and managerial practices.

Pollution from point sources will continue to be reduced as municipal waste water treatment plants upgrade their facilities, and restrictions on industrial discharge permits are tightened. Unfortunately, many chemicals from prior industrial discharges persist in the sediments (Francis, 2005).

With point sources becoming less of a problem, the focus of pollution control has been shifting to non-point source pollution, as alluded to in a 1975 report by the Clinton River Watershed Council (CRWC). In this report, it was acknowledged that “although in its infancy in terms of
research and development...stormwater runoff, in conjunction with erosion and sedimentation, is becoming the most important water quality issue for the future.”

An additional publication by the CRWC in the same year (CRWC, 1975b) noted the following pollution-related trends:

- Microbiological contamination is being reduced due to the elimination of septic systems due to increased sewer coverage; &
- Problems with nutrients, particularly phosphorus, continue to persist due to non-point runoff from agricultural areas (fertilizers).

While not a constant pollution source, combined sewers also began to be recognized for the damage they cause when an overflow occurs resulting in raw sewage diluted with stormwater runoff being routed to nearby waterbodies. In 1994, the U.S. Environmental Protection Agency (EPA) issued a combined sewer overflow (CSO) control policy aimed at reducing / preventing future pollution.

In 1995, the International Joint Commission modified the previously established Area of Concern (AOC) for the Clinton River (MDNR, 1988) to include the entire Clinton River watershed and the nearshore area of Lake St. Clair impacted by the river and spillway (CRPAC, 1995). The main problems associated with the original classification included high bacteria, nutrient, and dissolved solids levels, contaminated sediments, and impacted biota (MCHD, 2002; CRPAC, 2000).

In 1997, Macomb County established the Blue Ribbon Commission on Lake St. Clair. This commission determined four key elements that are required to manage water quality issues affecting Lake St. Clair. These include: monitoring, education, voluntary action, and regulation & enforcement. The commission also recommended various actions on watershed, local, state, national, and international levels that should be taken to support the four key elements (MCHD, 1997).

In the 1998 Clinton River Remedial and Preventive Action Plan – an update of the 1988 and 1995 RAPs - numerous pollution-related issues were discussed. Refer to the associated sidebar for details.

The MDNR’s 2005 Clinton River Assessment (Francis) notes that nonpoint source pollution is the greatest factor that degrades water quality in the region today. This type of pollution generally consists of sediments, nutrients, bacteria, organic chemicals, and inorganic chemicals from agricultural fields, livestock feedlots, construction sites, parking lots, urban streets, septic seepage, illicit connections, and historical dumping grounds.

**Pollution Discussion in the 1998 RAP – Relative to Lake St. Clair**

- There are no major industrial discharges to the Clinton River or its tributaries as most have instituted industrial pretreatment plans. Still, historical point sources are responsible for existing sediment contamination (e.g., heavy metals and organic compounds) in many waterbodies.
- Fecal contamination of waters has been greatly reduced especially with respect to CSOs and sanitary sewer overflows (SSOs).
- Pollution problems remain with failing septic systems, illegal sanitary sewer connections to storm sewers (although progress is being made), and fecal contamination from animals/wildlife.
- Storm water runoff is the most important pollution issue today as it carries pollutants from impervious surfaces and exacerbates erosion and sedimentation problems.


**Water Quality Parameters**

**Temperature**
A measure of thermal energy. It affects the biological process of organisms and alters the behavior of nutrients and pollutants in water.

**Dissolved Oxygen (DO)**
A measure of the amount of oxygen dissolved in water. Generally, the most important chemical substance in supporting life and regulating chemical processes. Source: MDNR, 1973a.

(continued on following page)
The discussion of conditions presented in this section is by no means comprehensive. Most studies referenced were those on-file or readily available from state agencies and regional/local groups and governments. The best effort has been made to identify and obtain those studies that were deemed relevant to the purposes of this plan.

1950s
In a 1953 study, the Water Resources Commission (WRC) noted that Lake St. Clair was generally low in suspended solids and generally free from pollution.

1960s – No known studies pertinent to discussion.

1970s
With increased regulation of water quality, federal and state governments increased monitoring and assessment efforts, thus producing much more data and discussion on water quality and pollution sources.

A 1975 MDNR study of Lake St. Clair documented the overall conditions of the lake. The findings of the study include the following conditions:

- Moderate / high alkalinity
- Low specific conductance / TDS
- DO levels good (some fair)
- Normal temperatures
- Low TKN in sediments
- Open water BOD low
- Low chlorophyll levels
- Low hydrocarbons in sediments
- TSS levels elevated
- Good levels of silica dioxide

Based on these factors the lake was classified as mesotrophic (having moderate levels of nutrients and algae).

A localized area of the lake, near the Clinton River Spillway, was classified as eutrophic due to high phosphorus, nitrogen, and chlorophyll levels. The spillway was noted to be a significant source of dissolved materials and the nearshore waters of the spillway area were of lower quality than other open lake waters for most water quality parameters. This area also had elevated levels of heavy metals, PCBs, and phthalates in the sediment. The shipping lane across the lake (from the St. Clair River to the Detroit River) also exhibited some sediment contamination.

1980s
A 1980 MDNR (1981b) bacterial pollution study of Lake St. Clair noted elevated levels in the vicinity of the Clinton River and excessive levels near the spillway. In general, bacterial pollution is higher near shore waters, especially tributary outlets, and in embayments (i.e., formations resembling a bay). The spillway area was also noted to have elevated turbidity and TSS.

A 1981 MDNR study of the mouth area of the Clinton River noted that standards for Total Dissolved Solids (TDS), pH, Dissolved Oxygen (DO), and temperature were good. DO was often supersaturated, indicating large communities of algae and macrophytes. This was especially true for the most downstream portions, nearest to Lake St. Clair, where high levels of chlorophyll-a were also detected. The supersaturated conditions mask problems in DO that may occur at night (when plants produce no oxygen), especially during drought flows.

A site near the Lake Boulevard Drain off of St. Clair Shores had elevated bacteria levels, but low solids, indicating possible nearby septic system problems.

1990s

The 2001 USGS document “Areal Distribution and Concentrations of Contaminants of Concern in Surficial Streambed and Lakebed Sediments, Lake Erie-Lake Saint Clair Drainages, 1990-1997” (Rheaume) examines sediment data taken throughout the U.S. portion of the Lake St. Clair sub-basin and the Lake Erie sub-basin. The scale of the data precludes its detailed discussion in this plan, but the raw data, available through the National Water Quality Assessment (NAWQA) on-line data warehouse, has been utilized, where appropriate, in the analyses presented in Chapter 5. The same can be said for the 2000 USGS document “Water Quality in the Lake Erie – Lake Saint Clair Drainages, Michigan, Ohio, Indiana, New York, and Pennsylvania, 1996-98” (Myers), which looked at some similar and some additional data over the period from 1996 to 1998.

Beginning in 1998, the Macomb County Health Department (MCHD) has conducted extensive water and sediment sampling throughout the subwatershed.


A recent development in the tracking of bacterial contamination sources has been the discovery that some pathogens may contaminate soils on the banks of waterbodies and especially the sand at beaches. It was largely believed that most bacterial contamination problems occurred from loadings to waterbodies, but this belief has been called into question. Research continues into this complex topic and has the potential to significantly change the paradigm for dealing with bacterial contamination in the future. For additional reading see LSCSCR, 1998.

2000s

A 2000 MDEQ study (2002b) of mercury in the sediments of Lake St. Clair noted elevated levels along the main shipping channel from the St. Clair River to the Detroit River, but the documented concentrations were not alarming by U.S. standards.

A 2002 MDEQ report documenting contamination in the Lange Street and Revere Street Canal sediments reported samples with PCB levels up to 80 times the probable effect level (PEL) – the level above which adverse biological effects are expected to occur. Excessive lead concentrations were noted in all samples of Revere Street Canal sediments and in one sample of Lange Street Canal sediments; all other metals (13) and compounds (cyanide, PNA, pesticides) tested were below associated PELs. Additionally, four (4) near shore sediment samples from Lake St. Clair in the vicinity of the canals showed no excessive levels of PCBs or other compounds.

There are two more recent reports documenting the sediment conditions in the canals, but these reports have not been summarized in this draft.

A 2005 DO monitoring study of the Milk River for years 2001, 2004 and 2005 by the Wayne County Department of Environment showed the DO

Water Quality Parameters

Alkalinity
The measure of the buffering capacity to neutralize hydrogen ions and resist pH changes.

Nitrogen Compounds

Organic Nitrogen – This is nitrogen not available for use by plants and animals but may be transformed to usable forms.

Ammonia – This is a product of the first stage of microbiological oxidation. It is converted to nitrite by nitrifying bacteria and quickly oxidizes to nitrate in aerobic conditions.

Total Kjeldahl Nitrogen (TKN) – This is a measure of the total ammonia and organic nitrogen. Assesses total reservoir of possible nitrogen for primary production.

Nitrate – This is the form most easily taken up by green plants.

Phosphorus Compounds

Total Phosphorus – All phosphorus compounds that are available for use or conversion to usable forms in plants.

Ortho-phosphorus – Phosphorus compounds that are readily available for use in plants.

Silica Dioxide
This is a critical nutrient for certain phytoplankton for use in their cellular structure. In its absence, less desirable communities become dominant.

Chlorophyll ‘a’
This is the photosynthetic pigment found in all plants. It provides an estimate of the algal standing crop.

Heavy Metals
Metals occur naturally in the environment, but elevated levels may occur due to industrial pollution. Metals tend to be toxic to most organisms.


(continued on following page)
levels to be fair with occasional dips to poor levels mainly due to CSO discharges and/or stormwater discharges (with suspected illicit connections).

The MCHD sampling begun in 1998 has expanded over the years and now includes monitoring at 22 sites (16 with data in 2003 and 2004) in or immediately offshore of the subwatershed (in Lake St. Clair). Summarized results for sampling in 2005 and 2006 were not available as of the publication of this document (although raw data for 2005 was utilized in the analyses presented in Chapter 5).

Based on the MCHD sampling, the bulk of water quality problems in recent years have been demonstrated to be restricted to the mouth areas of the following conveyances: the 8 ½ Mile Drain, the Martin Drain, the Milk River, and the Stephens Relief Drain. Metal and COD concentrations in the sediment are frequently above threshold levels. Nutrient concentrations in the water column and aqueous mercury levels have been above threshold levels at times throughout the sampling period (except at the Martin Drain mouth). Elevated turbidity levels have also been documented frequently at the 8 ½ Mile Drain mouth and the Milk River mouth.

In general, the sites offshore from the coastline exhibit water/sediment quality that is better than the nearshore sites.

### Biological Conditions – Historical and Current

The discussion of biological data presented in this section is by no means comprehensive. Most studies referenced were those on-file or readily available from state agencies and regional/local groups and governments. The best effort has been made to identify and obtain those studies that were deemed relevant to the purposes of this plan.

An important component documenting water quality in a specific area involves examining the biological conditions in various waterbodies. A number of reports, both historical and recent, are specific to waterbodies in the subwatershed and are discussed in this section. Figure 3-2 shows the inventoried locations in the subwatershed and presents a brief summary of the habitat, macroinvertebrate communities, and fish communities in addition to any other appropriate information.

#### 1960s

A 1967 Michigan Water Resources Commission (MWRC) study documented conditions in and surrounding the Milk River. In general, “poor” habitat and animal populations were found in and near Milk River Drain and mouth, and Nine Mile Drain channel. “Satisfactory” habitat and populations were found a short distance offshore from the drain mouths. Dissolved oxygen levels were above 6 mg/l at all locations.

#### 1970s

A 1975 MDNR report documenting the conditions of Lake St. Clair in 1973 classified the lake as mesotrophic (having moderate levels of nutrients and algae) and exhibiting a biota better than that of lower Lake Huron. Dissolved oxygen levels were noted to be near saturation levels at all points surveyed. High quality benthic and planktonic communities were present throughout the lake, and although populations were dominated by facultative (i.e. pollution tolerant) organisms, many intolerant types common to oligotrophic conditions were commonly found.
Figure 3-2. Biological study locations and summarized data.
The Clinton River Spillway area of the lake was noted to have a severely degraded benthic organism population with few species (worms and midges) and low population densities. Algae communities were of a tolerant type and exhibited elevated density levels. Overall, it was compared in quality to western Lake Erie (noting that Lake Erie exhibited extremely poor water quality in the 1970s). The conditions found in the study mirror those present in 1963 and 1965 (from Hiltunen, 1971).

1990s

In 1996, the United States Army Corps of Engineers (USACE) issued the results of an aquatic plant management investigation on Lake St. Clair.

Aquatic plants in Lake St. Clair numbered 158 total species (52 non-microscopic) in 1894 (Pieters). A decline in abundance was noticed in the 1950s with increased turbidity thought to be the influencing factor (USACE, 1996). A 1978 study found only 7 species in Lake St. Clair with plants occurring at only 16% of sampled sites. Between 1978 and 1994 an upward trend was noted, with the 1995 investigation documenting 12 species in Lake St. Clair and plants at 87% of sites sampled. The increase occurred along both the perimeter and in the open water with lakeward expansion most prominent along the western shore.

The positive trend in plant growth is thought to be a result of decreasing turbidity levels due to: soil erosion control in the basin, variations in water levels, sediment stabilization due to plant expansion, and the dramatic increase in zebra mussels which filter water for food and oxygen.

2000s

Volunteer stream monitoring through the CRWC’s ‘Stream Leaders’ program documented a “poor” macroinvertebrate community in the Milk River at Jefferson Avenue in both 2000 and 2004 and a “good” macroinvertebrate community at Memorial Park in 2004.

Threatened and Endangered Species

The MDNR provides information on threatened and endangered species in Michigan by watershed. This work is coordinated by the Michigan Natural Features Inventory (MNFI).

Table 3-2 identifies any plants or animals that are found in a subwatershed catchment and listed at the federal and/or state level. The classification scheme for the state and federal government is as follows:

- **Endangered (E)** - near extinction throughout all or a significant portion of its range in Michigan;
- **Threatened (T)** - likely to become classified as endangered within the foreseeable future;
- **Special Concern (SC)** - very uncommon in Michigan or has a unique habitat requirement and deserves careful monitoring; &
- **Extirpated (X)** - once existed in Michigan, but does not anymore.

The U.S. Fish & Wildlife Service (FWS) also classifies species as threatened (LT) or endangered (LE) the same as the state, except on a national scale.

In Lake St. Clair, the river darter, channel darter, eastern sand darter, lake sturgeon, and mooneye, are all listed as endangered.

Non-Native Species

Invasive non-native organisms are one of the greatest threats to the natural ecosystems of the U.S. Organisms are considered non-native when they are encountered beyond their known historical natural ranges. These species are transported from other parts of the world (including other parts of the U.S.) and disrupt the ecology of natural ecosystems, displacing native plant and animal species. Aggressive invaders reduce the amount of light, water, nutrients and space available to native species, alter hydrological patterns, soil chemistry, moisture-holding capacity, and erodibility, and change fire regimes (Randall 1996). Some exotics are capable of hybridizing with native plant relatives, resulting in unnatural changes to a plant's genetic makeup; others have been found to harbor plant pathogens (McElrone, et al., 1999). Still others contain toxins that may be lethal to certain animals.

There are a many invasive species which have been documented in or near the subwatershed. Examples from the Lake St. Clair Coastal Habitat Assessment (GLC, 2004) are presented in the following text.

Native Species

Every species has a home in some part of the world, where it has existed for thousands of years as a result of natural forces and influences. Over long periods of time, these and other physical and biological factors direct the distributions of organisms in nature (APWG, 2006). A native species is one that occurs in a particular region, ecosystem, and habitat without direct or indirect human actions (Kartesz and Morse, 1997). Species native to the subwatershed are as those occurring in the area prior to European settlement.
Invasive Plant Species

**Purple loosestrife**
Purple loosestrife is a widespread and serious problem that continues to invade and thrive in wetlands in southeast Michigan. It has the ability to quickly displace native vegetation as a single plant can produce up to one million seeds.

**Eurasian water-milfoil**
Eurasian water-milfoil is a rooted aquatic plant that can grow in a wide variety of habitats. Its long stems that branch near the surface of the water create a cover of floating foliage that blocks out native vegetation, affects macroinvertebrate communities, and impairs fish spawning. It is becoming common in Lake St. Clair with its frequency of occurrence at sampling sites doubling between 1978 and 1995 (LSCSCR, 1998).

A list of other known and potential invasive species includes: common buckthorn, common reed, honeysuckle, garlic mustard, privet, autumn olive, sweetclover, spotted knapweed, European frogbit, flowering rush, hydrilla, reed canary grass, cheatgrass, Japanese knotweed, leafy spurge, multiflora rose, smooth brome, and tree-of-heaven (GLC, 2004).

Invasive Animal Species

**Spiny water flea**
The spiny water flea is a tiny crustacean with long, sharp, barbed tail spines. It is poised to invade Lake St. Clair and from there could colonize water in tributaries throughout the basin.

**Zebra mussel**
This invasive from the Caspian Sea region was first discovered in Lake St. Clair in 1988. They aggressively compete with indigenous species, which has resulted in the extirpation of the 18 native species from the open waters of Lake St. Clair. The zebra mussel also aggressively colonizes submerged infrastructure such as water intake screens at treatment plants, creating extensive problems for industry and municipalities.

A list of other known and potential invasive species includes: emerald ash borer, Asian long-horned beetle, sea lamprey, round and tubenose goby, ruffe, Asian carp, and northern snakehead.

Hydrologic Conditions – Historical & Current

In addition to water chemistry and biological conditions, hydrologic conditions - how water moves on the land, in the soil, through bedrock, and in the atmosphere - are important in assessing the relative health of water-based environments. As discussed in the first section of the chapter, impervious surfaces can dramatically affect runoff volumes and rates. These changes then translate into alterations of the flow patterns in nearby waterways.

Unfortunately, no data exists to analyze changing flow patterns. However, trends in the Clinton River, which is under the influence of similar impervious surface stresses, indicate that the river (and its tributaries) is becoming more responsive to rainfall by exhibiting higher peak flow rates and increased ‘flashiness’. This generally implies that the few waterbodies in the subwatershed are exhibiting similar flow patterns. Please refer to the Clinton River East Subwatershed Management Plan for additional information.
Floodplains

While waterbodies naturally are associated with areas that will flood under various conditions, man-made changes that affect the hydrology of water flowing to them and the hydraulics of water flowing in them can exacerbate flooding problems.

As part of the National Flood Insurance Program, the Federal Emergency Management Agency (FEMA) has delineated potential flood areas throughout the subwatershed. Flood areas are not necessarily delineated for all waterbodies. The potential flood areas that have been delineated in the subwatershed are presented in Figure 3-3.

Figure 3-3. Floodplains.

FEMA Floodplain Categories

- **Zone AE** – 100-yr floodplain determined by calculation
- **Zone A** – 100-yr floodplain determined by estimation
- **Zone D** – Possible flooding; no analysis conducted
- **Zone X500** – 500-yr floodplain
- **Zone ANI** – No floodplain map for area
- **Zone X** – All areas not in other categories

Flood Control Structures

Nearly all of the shoreline and the canals are protected by either concrete/steel sheet piling or earthen and sandbag dikes constructed through assistance from the U.S. Army Corps of Engineers’ ‘Operation Foresight’. The Milk River has a control structure on the lakeside of Jefferson Avenue that allows for flood control when the lake levels are at flood stage. A number of noted problems with the dike system include: 1) areas where property owners have removed/reduced dikes, and 2) the propensity for waters overtopping the system to be entrapped behind the system when the flooding event recedes. In some locations, lakeside roads provide flood and wave action protection due to their elevation and construction (FIA, 1980; 1979; 1978a, 1978b).

These floodplains reflect recent updates undertaken by FEMA in response to extensive flooding in May 2004 that caused more than ten million dollars of public property damage throughout Macomb County alone.

The nature of development in the subwatershed over the years has resulted in many of the open channels being enclosed. Exceptions include...
Water Budget Issues
The water budget of the subwatershed has changed over the years. Some facts to note:
Combined sewers drain a significant portion of the land. This flow is routed to the DWSD WWTP instead of discharged to the lake. However, overflow events may result in discharge. Sanitary sewers transport water out of the watershed to be treated at the DWSD WWTP. Some of the water supplied to households is from outside of the subwatershed as the DWSD water supply system utilizes numerous intakes, including Lake Huron (Francis, 2005).

Volunteers
Several Subwatershed Advisory Group (SWAG) members volunteered to conduct the visual assessment surveys. The volunteers conducting the surveys completed a training session before engaging in actual field work.

Current Data for Planning: Visual Assessment
A visual assessment was conducted in the subwatershed to obtain current data to utilize in the assessment of problems, their causes, pollutant sources, and critical areas. The assessment was comprised of three surveys that involved documenting problems or problem indicators in targeted waterbodies and upland areas. The surveyed locations were selected to provide a representative cross-section of the subwatershed.

The three different types of surveys conducted are detailed below:
- Road-Stream Crossing Surveys - This survey looked at physical characteristics, substrate, shade cover, morphology, adjacent land uses and potential pollution sources. The survey was conducted using the MDEQ’s Stream Crossing Watershed Survey (2000b) procedure. This procedure was selected to provide consistency with existing information throughout the State of Michigan and with existing data in the subwatershed that is being collected by the CRWC;
- Unified Stream Assessments (USA) – This survey, developed in 2005 by the Center for Watershed Protection (CWP), involves looking for and documenting issues that potentially impact each waterbody. Each stream assessment involved documenting and evaluating specific impacts as they were encountered (i.e., stormwater outfalls, severe bank erosion, impacted buffers, stream crossings, channel modifications, trash and debris, utility impacts, and miscellaneous). Additionally, a general assessment for the entire reach was performed upon completion of all other evaluations. This survey was conducted by Macomb County Public Works Office (MCPWO) staff; and
- Unified Subwatershed and Site Reconnaissance (USSR) – This survey, also developed by the CWP (2005), involved conducting quick but thorough characterizations of upland areas. The goal of the USSR was to identify major source types and areas that potentially contribute pollutants to waterbodies. The four major components of this survey include: neighborhood source assessments, hotspot site investigations, pervious area assessments, and street and storm drains assessments. This survey was conducted by MCPWO staff.

The locations visited by the surveyors are presented in Figure 3-4.

The data and assessments presented in this section provide a baseline for more specific analyses regarding problems in the subwatershed. Further investigation of the sites will be required prior to taking corrective action to more accurately assess the nature and extent of the problem and determine the appropriate solution.
Figure 3-4. Survey locations.
Road-Stream Crossings Survey

In all, 9 road-stream crossings in the subwatershed (100% of the total) were surveyed. The data sheet associated with this procedure is inset.

The general results of the road-stream crossing survey are shown in Figure 3-5. The symbols indicating the locations indicate the number of potential problems identified by the survey. See the legend on the map for details. Table 3-3 presents more detailed information about the problems identified at each site. All photos are courtesy of the volunteers.

Milk River at Jefferson Road

Tebo Creek at Harper Road

Cottrell Drain at Cottrell Road

Roseville – Clinton Drain at 13 Mile Road
Figure 3-5. Identified problems.
Table 3-3. Detailed road-stream crossing survey results.

<table>
<thead>
<tr>
<th>Waterbody</th>
<th>Stations#</th>
<th>Trash / Debris</th>
<th>Illicit Discharge</th>
<th>Recreation</th>
<th>Shade Cover</th>
<th>Riparian Buffer</th>
<th>Substrate</th>
<th>Imperviousness</th>
<th>Turf / Lawns</th>
<th>Agriculture</th>
<th>Hydrology</th>
<th>Other Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk River</td>
<td>MR-01</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>MR-02</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cottrell Drain</td>
<td>CT-01</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CT-02</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Roseville-Clinton Drain</td>
<td>RBRC-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>RBRC-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RBRC-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RBRC-05</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tebo Creek</td>
<td>TBC-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

The most common potential problem in the subwatershed is the lack of a 100-foot buffer on each side for the waterbodies. All sites failed to provide this amount. Additional observations of the data include:

- Imperviousness was identified as a potential problem for one site;
- The substrate was identified as a problem for all sites on the Cottrell Drain, Roseville-Clinton Drain, and Tebo Creek;
- A common potential problem is the proximity of the waterbodies to managed lawns or other urban residential neighborhoods;
- Trash and debris issues are most pronounced for the Roseville-Clinton Drain;
- Illicit discharges were identified as potential problems for all sites on the Milk River and Cottrell Drain, and as potential problems on half of the sites on the Roseville-Clinton Drain; and
- Shade cover, hydrology, and other sources were identified as problems at many sites throughout the subwatershed.

Roseville – Clinton Drain at Little Mack Road

*Streambank erosion problems are presented in a separate section.*
Unified Stream Assessments

A unified stream assessment (of approximately ½ mile) was conducted at one location in the watershed: the Cottrell Drain between Union Lake Road and Jefferson Street. This reach is highlighted in Figure 3-4.

The assessed reach is a fairly accessible stream with a suboptimal buffer width of 25-50 feet. The surrounding land use is residential with the shrubs or old fields identified as the predominant floodplain vegetation. Fish, snails, and rodents were sighted during the assessment. Sediment deposition and invasive plant species were identified as the most substantial problems in the reach.

Additional observations include the following:

- Five stormwater outfalls were found. Four of the outfalls were circular pipes with diameters ranging from 12 inches to 15 inches and one outfall was a 10-foot by 10-foot rectangular pipe. The 10-foot by 10-foot outfall had excessive vegetation and restoration is recommended;
- There was one instance of channel modification due to bank armoring and channelization. The channel is stable;
- Five stream crossings ranging from 36-inch to 54-inch circular pipes. Four crossings not recommended for restoration. One crossing has significant sediment deposition and is recommended for restoration by sediment removal; and
- Five impacted buffers of up to 250 feet. The area contains significant amounts of invasive plants. All locations are candidates for removal of invasive species.
Road Stream Crossings Survey, Unified Stream Assessment, and Historical Data – Focus on Streambank and Shoreline Conditions

An examination of the conditions of the streambanks and shorelines can give us an insight into the health of the associated waters. A summary of existing data for bank conditions in the subwatershed is shown in Figure 3-6. The bank conditions are classified as “good”, “fair”, or “poor” based on ratings from previous and recently collected data.

Data from the Clinton River Watershed Council (CRWC, 2005) from 1999 to 2004 noted “good” conditions on the Milk River at Jefferson Road.

In 2005, field data collected by the MCPWO and volunteers (refer to the ‘Visual Assessment’ section of the plan) documented “good” conditions at both surveyed locations on the Cottrell Drain, both location on the Milk River, and two of four locations on the Roseville-Clinton Drain. “Fair” conditions were documented on the single Tebo Creek site and one Roseville-Clinton site, and “poor” conditions were documented at the remaining Roseville-Clinton drain sites.

As noted earlier in the chapter, nearly all of the shoreline and the canals are protected by either concrete/steel sheet piling or earthen and sandbag dikes. There are only three locations in the subwatershed where the artificial shoreline is broken to allow for small beaches (GLC, 2004).

While no extensive data exists in the subwatershed documenting the extent of channelization of the waterways, it is recommended in the future to extract this data from existing sources such as aerial photography or USGS topographic quadrangles.

Shoreline Conditions – a Location in the Grosse Pointe Catchment

Courtesy of MCPWO
Figure 3-6. Streambank conditions in the subwatershed.
Figure 3-6. Streambank conditions in the subwatershed (continued).
Unified Subwatershed and Site Reconnaissance

The number of USSR surveys conducted throughout the subwatershed is as follows:

- Neighborhood Source Assessment (NSA) – 11;
- Streets and Storm Drains (SSD) – 8;
- Hotspot Site Investigation (HSI) – 5; and
- Pervious Area Assessment (PAA) – 3.

The surveys are summarized in the following text.

**Neighborhood Source Assessment**

The neighborhood source assessment involved selecting a representative area in the neighborhood and gauging pollution source potential with respect to four main categories: ‘Yards and Lawns’, ‘Driveways, Sidewalks, and Curbs’, ‘Rooftops’, and ‘Common Areas’.

The subwatershed is characterized by relatively small parcels with a relatively large amount of impervious areas. Most lots are less than one-half acre, with greater than 50% of the neighborhoods having lots less than one-quarter acre. Of the eleven neighborhoods assessed, 91% had impervious cover greater than 40% and 54% of neighborhoods contained impervious cover greater than 60%. About 80% of the neighborhoods had sidewalks, which contribute to the amount of impervious area. Larger impervious areas increase the volume and peak flow rate of stormwater runoff that will occur. Impervious surfaces also play a critical role in transporting pollutants to storm sewers.

In all but one neighborhood at least 67% of lots had moderately to highly maintained turf grass. Highly managed turf grass is often the source of nutrients from fertilizer, grass clippings, and other yard waste. It is also a source of pesticides and herbicides.

All of the neighborhoods had curb and gutter. Only 45% of the neighborhoods were assessed as having ‘clean and dry’ curb and gutter. Organic material, such as leaves and lawn clippings, sediment, and animal waste had the largest pollution source potential in the curb and gutter.

In 36% of the neighborhoods, a majority of rooftops were directly connected to sewers or impervious surfaces that are directly connected to the sewers. Directly discharging roof drains increase the volume and peak flow rate of water in the sewer.

Four of the assessed neighborhoods had open spaces, and none of the neighborhoods had stormwater ponds.

Based on field observations, 73% of neighborhoods showed indicators for excessive nutrients and 73% of neighborhoods were also assessed as having significant sediment pollution potential. Thirty-six percent (36%) were identified as having oil and grease, but none of the neighborhoods were identified as having significant litter. Better lawn and landscaping practices were determined to be feasible in 90% of the locations. Disconnecting downspouts is possible in about 30% of the neighborhoods.
Streets and Storm Drains Assessment

The streets and storm drains assessment involved selecting a street area and gauging pollution source potential with respect to three main categories: ‘Street Conditions’, ‘Storm Drain Inlets and Catch Basins’, and ‘Non-Residential Parking Lot’.

Of the eight streets and storm drain assessments conducted in the subwatershed, 50% were in residential areas, 30% in commercial areas, and the remaining 20% in industrial/institutional areas. The street types surveyed break down as follows: arterial – 38%, local – 38%, and collector – 25%. All of the sites utilize enclosed storm drainage infrastructure.

At 50% of the locations, the roads were noted to be cracked. This condition may allow more sediment to be introduced into runoff as a result of the deteriorating concrete. Thirty-eight percent (38%) of the street areas allowed on-street parking which requires more impervious area than streets without parking and also may interfere with street sweeping efforts, resulting in increased sediment loads in runoff.

The presence of litter on the road surfaces was low with 88% of the sites receiving ‘clean’ scores. However, only 50% of the sites received ‘clean’ scores with respect to sediment, and only 25% received ‘clean’ scores with respect to organic material. No sites received ‘filthy’ scores.

Obstructed catch basin inlets were noted at one site, oil and grease were identified at two sites.

Street sweeping and catch basin cleaning were gauged to be highly feasible pollution reduction strategies at these locations. Storm-drain stenciling was also gauged to be feasible at about 90% of the locations.

Pervious Area Assessment

The pervious area assessment involved selecting an area and assessing its conditions and potential with respect to three main categories: ‘Natural Area Vegetative Cover and Impacts’, ‘Open Area Vegetation and Impacts’, and ‘Open Area Reforestation Constraints’.

The pervious area assessment was completed for three locations in the subwatershed, including two parks and one school. None of these locations were connected to adjacent private or public pervious areas.

Stormwater runoff had impacts at the school location.

The three sites were dominated by turf but two of the sites had at least 25% tree coverage. Soil compaction was found at all three sites and erosion was determined to be significant at two of the sites. Compaction can cause less infiltration of water into the ground and more runoff, which contributes to negative stormwater effects.

Reforestation is one method to reduce stormwater volume, peak flow, and erosion. Overhead wires, underground utilities, pavements, and buildings represented constraints to reforestation. Only one site was indicated as being able to be reforested with minimal preparation.
Hotspot Site Investigation


Five hotspots were assessed for pollution potential in the subwatershed. Of those five, four were municipal properties and one was a commercial property.

Forty percent (40%) of the sites contained vehicles that were maintained, repaired, and washed on site. Half of those locations performed at least some of this work outside. Fueling areas were directly connected to storm drains at 20% of the sites, and uncovered, outdoor fueling areas were located at 20% of the sites. Uncovered, outdoor fueling areas are potential sources of fuel pollution, especially when the fueling areas are directly connected to the sewer. Spills and leaks from vehicles were identified at 20% of the sites.

Materials were stored outside, without a cover at 40% of the locations assessed. Materials stored outside, without cover are more likely to be sources of pollution than those stored in protected locations.

Twenty percent (20%) of assessed locations had dumpsters unprotected from rainfall or in damaged condition. Twenty percent (20%) also had dumpsters that were located near a storm drain inlet. Leaky dumpsters or trash around them has the potential to contaminate runoff that will eventually enter the storm drain.

The building and parking lots at these locations ranged in age from ten to 50 years. Buildings were classified as ‘clean’ at 80% of the sites, while parking lots were classified as ‘clean’ at only 20% of the sites. Only one assessed location had downsputs that directly discharge to the sewer (storm or sanitary) or to impervious areas drained by the sewer.

Grass constituted the largest percent of turf and landscape area at two sites, which both were considered to have moderately maintained turf. Moderately maintained turf can be a source of pollution from nutrients (fertilizers, grass clippings, leaves), pesticides, and herbicides. Bare soil covered all of another site. Erosion and sediments are more likely with bare soil.

Stormwater treatment practices were not found at any of the sites, and one site was assessed as a ‘potential’ environmental hotspot.

Education was determined to be a feasible solution for about 40% of the sites.
Summary

The Road-Stream Crossing and USA surveys looked at waterbodies throughout the subwatershed and identified potential and actual problems of various magnitudes. The most common issues within the subwatershed were trash/debris in waterbodies, impacted/inadequate riparian buffers, bank erosion, and proximity to problematic land use types.

The USSR looked at upland areas throughout the subwatershed and characterized pollution potential for neighborhoods, streets, and hotspots, and assessed restoration potential for pervious areas. Common potential sources of pollution in the subwatershed included nutrients from lawn maintenance, sediment, and lack of pollution control at some hotspots. These sources have an increased pollution potential when there is increased imperviousness. Education, maintenance of streets and catch basins, better lawn maintenance practices, and reforestation of pervious areas were all cited as some of the potential solutions to reduce the pollution potential of the subwatershed.

While the information presented in this section is specific to the sites visited, at the time they were visited, it can be extrapolated to estimate the extent of the identified problems throughout the subwatershed. Correlations can also be made between the pollutant sources surveyed in the USSR and the problems identified in the waterbodies. Additionally, this data is useful in estimating pollutant load reductions to waterbodies as a result of correcting the documented problems. These types of analyses are documented and discussed in Chapter 5 of the plan.

Analysis of Imperviousness

As explained in the first section and illustrated throughout the preceding section of this chapter, impervious surfaces play an integral role in contributing to water quality and hydrological problems. There are a number of ways to estimate the extent of impervious coverage in the subwatershed. For the purposes of this plan, two methods utilizing available data have been selected. The first estimates impervious surface coverage based on land use (see Chapter 2) and SEMCOG impervious cover values for each type of land use (Table 3-4).

<table>
<thead>
<tr>
<th>Land Cover</th>
<th>Impervious Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Water</td>
<td>0.0</td>
</tr>
<tr>
<td>Woodland and Wetland</td>
<td>0.0</td>
</tr>
<tr>
<td>Cultivated Land (Agriculture)</td>
<td>2.0</td>
</tr>
<tr>
<td>Open Space (Recreation)</td>
<td>10.9</td>
</tr>
<tr>
<td>Open Space (Grassland)</td>
<td>2.0</td>
</tr>
<tr>
<td>Developed Land - Residential (Single-family)</td>
<td>18.8</td>
</tr>
<tr>
<td>Developed Land - Residential (Multi-family)</td>
<td>51.4</td>
</tr>
<tr>
<td>Developed Land - Under Development / Other*</td>
<td>18.8</td>
</tr>
<tr>
<td>Developed Land - Transportation / Utility</td>
<td>52.9</td>
</tr>
<tr>
<td>Developed Land - Industrial</td>
<td>75.9</td>
</tr>
<tr>
<td>Developed Land - Commercial and Office</td>
<td>76.3</td>
</tr>
<tr>
<td>Developed Land - Institutional</td>
<td>28.0</td>
</tr>
</tbody>
</table>

* includes a very small amount of ‘Extractive / Barren’ land which has an impervious percentage of 10.0. Source: Perry and Hamann, 1998.
The second method utilizes National Land Cover Data (NLCD) based on satellite imagery for the year 2000 (MRLC, 2001).

As Table 3-5 shows, the trends in impervious cover for each of the subwatershed catchments is similar between the two methods, however the actual values vary significantly.

### Table 3-5. Impervious cover percentages.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Impervious Cover from Land Use</th>
<th>Impervious Cover from NLCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>22.7%</td>
<td>45.6%</td>
</tr>
<tr>
<td>Lake – North</td>
<td>31.9%</td>
<td>54.8%</td>
</tr>
<tr>
<td>Lake – South</td>
<td>27.5%</td>
<td>59.7%</td>
</tr>
<tr>
<td>Subwatershed Average</td>
<td>27.6%</td>
<td>53.5%</td>
</tr>
</tbody>
</table>

The comparison of the results of the two methods is primarily shown to illustrate the documented variability in the differing methods utilized to estimate impervious cover (Moglen, 2006). A visual representation of the impervious cover from the land use data is shown in Figure 3-7.

**Figure 3-7. Impervious cover based on land use type.**
The remaining discussion is based on this data as the impervious percentage coefficients were derived based on regional information. The impervious cover for the subwatershed as a whole is 27.6%. The Lake – North catchment has the greatest percentage of impervious surface, 31.9%. The Grosse Pointe catchment has the lowest impervious percentage at 22.7%. The Lake – South catchment has an impervious surface coverage of 27.5%.

Analysis of stream systems across the country seems to indicate that there are thresholds at which watershed imperviousness results in measurable degradation of waters. The Impervious Cover Model (Schueler, 1994) describes this relationship, some threshold values of imperviousness, the characteristics of streams impacted by imperviousness, and recommended actions to address issues in these streams. The ICM relationship is displayed in Figure 3-8.

Figure 3-8. Relationship between impervious cover and stream quality.

Additional information is presented in the ‘Impervious Cover Model’ sidebar. The ICM, although a powerful tool to predict the quality of streams based on impervious cover change, has limitations and is not an absolute indicator. It is not generally applicable at scales greater than 10 miles and is based primarily on data from the northwest portion of the U.S. It is important to understand that the ICM is applicable at a single point along a waterbody; the analysis of imperviousness must consider the entire area of land tributary to that point.

While outside the scope of this plan, it is recommended, in the future, to properly analyze the streams in the subwatershed in the context of the ICM. This involves defining drainage areas for numerous points along each stream to be analyzed and conducting the impervious analysis as described in the beginning of this section. At this point, it can be said, based on the catchment-aggregated data, that the impervious coverage for a given catchment can be compared to the ICM values to determine the likely classification of the small streams in that catchment. The remaining discussion in this section approaches the topic in such a manner.
No catchments in the subwatershed fall within the ‘Sensitive’ category. This indicates that all of the waters in the subwatershed are at least impacted by imperviousness to some extent. The Grosse Pointe catchment falls within the ‘Impacted’ category. Waterbodies in an impacted catchment are expected to show some signs of degradation. However, the Grosse Pointe catchment has no active watercourses (Fox Creek, which may drain a very small area of the subwatershed, is technically outside of the subwatershed boundaries – refer to Chapter 2). Historically, the Milk River naturally drained a portion of the catchment, but it was long ago enclosed and incorporated into the combined sewer system upstream of the Macomb County/Wayne County border. Still, the impervious category of the catchment is an indicator of the quality of water that is draining from it into Lake St. Clair (for those portions not served by the combined sewers that are tributary to the DWSD WWTP). Watershed protection activities in this catchment should focus on protecting the critical elements of water quality and implementing protection strategies that focus on reducing pollutant loads from existing impervious areas in separate storm sewer areas.

The Lake – North and – South catchments fall into the category of ‘Non-supporting’ implying that many waterbodies in these catchments may be affected by impervious cover such that they show impacted water quality, low biodiversity, and have unstable channel banks. Watershed protection activities in these catchments should focus on reducing bacterial contamination and implementing pollutant load reducing BMPs.

It is important to note that a portion of the Lake – North catchment is a ‘headwater area’ for the Rohrbeck Extension Drain and the fact that it is classified in the ‘Non-supporting’ category is problematic in terms of future water quality potential.

As a whole, the subwatershed is affected by the high percentage of imperviousness. Most areas are expected to exhibit moderate to serious problems, and protection actions should be tailored toward preventing further deterioration and reducing pollutant loads, where possible.

While short-term actions for areas most affected by impervious surfaces are related to minimizing existing problems, the long-term outlook for these areas can be geared towards restoration if the right steps are taken. However, one of the purposes of the ICM is to identify streams that are outside of the severe impacts of imperviousness, so that limited resources can be funneled towards the protection of these resources. This approach is much more cost-effective than trying to restore streams severely degraded by high levels of imperviousness.

**Current Subwatershed Protection Practices**

The subwatershed conditions discussed in the previous sections of this chapter are in large part a result of local/county/regional plans, programs, projects, and ordinances. As such, an audit was performed to identify and critique the elements of these various documents that impact water quality (excluding those documents that were not publicly available). Based on the results of the audit, the communities were classified into groups summarizing their current level of watershed protection.
Audit Methodology
Each community’s planning and regulatory documents were evaluated and scored based on the number of question responses that indicated the community was performing a protection activity (which gauges the level of protection afforded by the plans, etc.). The communities were then grouped based on the ‘scores’.

Audit Limitations
- The grouping of communities allows for manageable assessment but reduces the resolution of the analyses.
- Only verifiable and enforceable standards were given scoring credit.
- Communities may not have received credit for work the county is doing on their behalf.
- Credit was only given for soil erosion control if mention of compliance with state programs was included.

Audit Details
The audit is based on the evaluation mechanisms created by the SEMCOG and the CWP. The over 300 questions contained in the SEMCOG Opportunities for Water Resource Protection in Local Plans, Ordinances, and Programs (2002) were grouped using the CWP’s Eight Tools of Watershed Protection (2002):

- Watershed Planning - The application of regulatory measures and/or planning techniques that are designed to maintain or limit future impervious cover, redirect development, and protect sensitive areas;
- Land Conservation - Programs or efforts to conserve undeveloped, sensitive areas or areas of particular historical or cultural value;
- Aquatic Buffers - The protection, restoration, creation, or reforestation of stream, wetland, and urban lake buffers. Aquatic Buffers and Better Site Design were combined for this analysis;
- Better Site Design - Local ordinances and codes to incorporate techniques to reduce impervious cover and/or redirect runoff onto pervious surfaces in the design of new development and redevelopment projects. Aquatic Buffers and Better Site Design were combined for this analysis;
- Erosion and Sediment Control - The use of erosion control, sediment control, and dewatering practices at all new development and redevelopment sites;
- Stormwater Management - The incorporation of structural practices into new development, redevelopment, or the existing landscape to help mitigate the impacts of stormwater runoff on receiving waters;
- Non-Stormwater Discharges - Locating, quantifying, and controlling non-stormwater pollutant sources in the watershed. May also include operation and maintenance practices that prevent / reduce pollutants from entering the natural/municipal drainage system; and
- Watershed Stewardship Programs - Stormwater and watershed education or outreach programs targeted towards fostering human behavior that prevents or reduces pollution over a range of land uses and activities.

Audit Results
The general results of the audit indicate that none of the communities have all the recommended stormwater policies and procedures in place. This means that local rivers and streams are currently vulnerable to activities, especially those surrounding development. In fact, there is not a single community that currently is requiring half of the actions as prescribed by the SEMCOG or the CWP.

The communities were grouped into three classes that briefly summarize the level of protection afforded to the subwatershed:

3 The classifications and discussion of each is based on results of not only the LSCW, but also the Clinton River – East Subwatershed (CREW) and Red Run Subwatershed (R2W). The analysis included 35 of the 39 communities comprising these three subwatersheds and also included Macomb, Oakland, and Wayne counties.
Group 1

The planning documents for Group 1 communities indicate that there is little attention paid to watershed management under the current formal practices. The audit elicited the following characteristics of the Group 1 communities:

- Only one community had a Community Master Plan that addressed the impacts of stormwater;
- Ordinances, including zoning ordinances accounted for 80% of the communities’ scores and were dated. Typically, ordinances are based on a template created in the 1970s and have been only updated on an as-needed-basis;
- They have not adopted overlay zoning districts for riparian areas and greenways even if they may be available at the county level;
- In general, the only reference made to stormwater in the ordinances is that buildings within 200 feet of the stormwater sewer system must be hooked into it (70% of the communities);
- Sixty percent (60%) of the communities did not allow septic systems within urban areas and 60% had a tree ordinance; and
- Only 50% of the communities regulated soil erosion/sediment control; 40% had provisions for cluster/open space developments.

Communities may be implementing some protection during the site plan review process. Communities may be requiring developers to undertake stormwater best management practices such as preserving natural features and establishing buffers along riparian corridors, along with a host of other protection measures. However, these ad hoc methods are not defensible in court and must be codified to provide true watershed protection.

Group 1 is comprised of communities scoring between 1 and 7 (out of 44) and includes: Grosse Pointe Park, Grosse Pointe, Grosse Pointe Woods, Eastpointe, and Roseville.

Group 2

What differentiates Group 2 from Group 1 is primarily the specific reference to stormwater in community planning documents. The audit elicited the following characteristics of the Group 2 communities:

- Twenty percent (20%) of the communities had a Community Master Plan that addressed the impacts of stormwater although a majority of these were out-of-date (> 5 years old);
- Sixty-five (65%) percent of the scores that communities received were from their ordinances;
- In Group 2 communities, the categories that showed significant improvement over Group 1 were provisions for clustering/open space (90%), recognition of floodplains and/or stream corridors (80%), wetlands (50%), natural area/greenway preservation (30%);
- There is marked improvement in Group 2’s efforts to manage stormwater over Group 1, especially if one considers the unaccounted for activities occurring at the site plan review level; and

Group 1 Synopsis

The Group 1 communities do not have all of the needed practices to protect local waterways from the impacts of stormwater. Significant effort will be needed to elevate local planning documents to a level necessary to implement the measures recommended by SEMCOG and the CWP and to be compliant with the Phase II stormwater requirements.

Group 2 Synopsis

In general, these communities lack a comprehensive approach toward land management and, in particular, environmental management (including stormwater). This patchwork approach primarily stems from updating an out-of-date ordinance model on an as-needed-basis as opposed to integrating communities’ ordinances with their Master Plan.
• Group 2 communities have made strides at integrating state requirements, county initiatives, and other planning initiatives into planning documents.

The Group 2 communities offer some protection of local waterways from the impacts of stormwater. The biggest drawback is the inability of communities to strictly and uniformly enforce standards due to not having formally adopted them. Communities could close this gap by adopting ordinances that are coordinated with the county and are applicable throughout their jurisdictions. Generally, extensive work will be needed to upgrade the planning documents of Group 2 communities to implement the measures recommended by SEMCOG and the CWP to be compliant with the Phase II stormwater requirements.

Group 2 is comprised of communities scoring between 8 and 14 (out of 44) and includes: Clinton Township, St. Clair Shores, Grosse Pointe Shores (including Lake Township), and Harrison Township.

Group 3 communities have the most stormwater practices of those reviewed. Still, the protection afforded to waterways by these communities is not as comprehensive as it could be. The audit elicited the following characteristics of the Group 3 communities:

• Forty percent (40%) of the communities had Master Plans that addressed the impacts of stormwater and 100 percent of the communities addressed floodplains, stormwater, soil erosion and public education in their planning documents.

• Eighty-five percent (85%) of the communities addressed wetlands and woodlands.

• Sixty percent (60%) of the communities addressed cluster/open space development and natural area preservation.

Group 3 is comprised of communities scoring 15 or greater (out of 44) and includes: Macomb County and Wayne County.

Identified Waterbody Problems

MDEQ-defined Impairments

Waterbody impairments involve non-attainment of water quality standards and are based on data and research. The primary reference for determining impairments is MDEQ’s biannual water quality report (MDEQ-WD, 2006). This report lists the following impairments:

- Milk River - Dissolved Oxygen
  - Pathogens
  - Fish kills
  - Phosphorus

Figure 3-9 shows the location of the listed waterbodies.

---

4 According to communications between the Wayne County Department on Environment and the MDEQ, the status of the Milk River was to be updated in the fall of 2005 to reflect the advances taken over the last 10 years. However, the listed problems have remained the same in the 2006 report.

5 Pathogen impairments in the subwatershed are specifically linked to the presence of Combined Sewer Overflows (CSOs) as referenced in the Michigan Water Quality Standards: “Total body contact recreation immediately downstream of … combined sewer overflows… is contrary to prudent public health and safety practices, even though water quality standards may be met.”
Figure 3-9. Location of listed waterbodies.

**Beneficial Use Impairments**
Because the subwatershed is located in the Clinton River AOC, it has the following BUIs:
- Degradation of aesthetics;
- Beach closings and other “full body contact” restrictions;
- Degradation of benthos;
- Loss of fish / wildlife habitat;
- Restrictions on dredging activities;
- Eutrophication / undesirable algae populations;
- Degradation of fish / wildlife populations; and
- Restriction on fish / wildlife consumption.

The BUIs do not have regulatory significance at the state level, but do provide insight into the types of problems encountered throughout the subwatershed.

**Fish Consumption Advisories**
In addition to specific waterbodies, the Michigan Department of Community Health also has a general fish consumption advisory for all inland lakes, reservoirs, and impoundments for mercury contamination in Crappie, Bass (Large- & Smallmouth, and Rock), Muskellunge, Northern Pike, Walleye, and Yellow Perch.

**Lake St. Clair**
Although not within the subwatershed boundaries, Lake St. Clair is the receiving water for the subwatershed. The lake is listed as an impaired waterbody due to the following:
- Fish Consumption Advisory – PCBs; and
- Mercury in fish tissue.

Additionally, the subwatershed includes Memorial Beach and Pier Park Beach which are associated with impairments for pathogens.

**Memorial Beach**

The Milk River is in the Lake – South catchment.

**Lake St. Clair**

Although not within the subwatershed boundaries, Lake St. Clair is the receiving water for the subwatershed. The lake is listed as an impaired waterbody due to the following:
- Fish Consumption Advisory – PCBs; and
- Mercury in fish tissue.

Additionally, the subwatershed includes Memorial Beach and Pier Park Beach which are associated with impairments for pathogens.

**Memorial Beach**

The Milk River is in the Lake – South catchment.
Interpretation of Subwatershed Conditions

This chapter was intended to present the conditions of the subwatershed that can be used to concretely identify the problems in the subwatershed, the causes of the problems, and the sources of the causes of the problems. The continuing analysis of problems, causes, and sources is presented in Chapter 5. This follows the Chapter 4: Community Outreach and Involvement chapter because the public input that was obtained throughout the planning process was also used to define the problems, causes, and sources in the subwatershed, in addition helping define the targets to which the resources of the subwatershed should be managed.

References


Macomb County Health Department [MCHD]. “Developing a Bathing Beach Monitoring Program.” Via:

http://www.macombcountymi.gov/


Macomb County Health Department [MCHD]. “Macomb County Blue Ribbon Commission on Lake St. Clair.” 1997.


Michigan Department of Natural Resources [MDNR]. “Clinton River Study at Mt. Clemens.” 1981


Pictures


4. Community Outreach and Involvement

Public Input Processes

Public involvement played a key role in the development of this watershed management plan (WMP). Throughout the development process, members of the general public and specific groups of stakeholders had the opportunity to actively participate. A Public Participation Plan (PPP) crafted for the subwatershed guided the opportunities for public participation. The goal of the PPP, which was submitted to MDEQ on March 31, 2004 and subsequently approved, is to effectively involve stakeholders throughout the WMP development process so that they would contribute during the process, understand the WMP recommendations, and ultimately support its implementation. To achieve this goal, the PPP identified the following objectives:

- Identify key stakeholders in the subwatershed;
- Include a wide variety of agencies and interests;
- Develop a process for effective stakeholder involvement;
- Develop materials to educate stakeholders and constituents; and
- Gather useful, measurable social feedback.

The PPP contains an adaptive management approach, allowing the Subwatershed Advisory Group (SWAG) to have the necessary flexibility to adjust the process during WMP development. While the PPP outlined specific activities for the SWAG to complete, the SWAG was able to modify these activities based on a better understanding of how to obtain local public input.

To ensure broad public participation, the WMP development process incorporated several activities for obtaining public input. The public participation activities included:

- SWAG meetings
- Stakeholder workshops
- Focus group meetings
- Community Forums with follow-up comments via website

These activities, and the feedback obtained, are summarized below, in chronological order.

SWAG Meetings

The SWAG consists of representatives from each community, as well as Macomb County and other local agencies (see Chapter 1 for a complete list). This group met monthly and served as the core decision-making body throughout the WMP development process. The members regularly provided data, opinions, comments, and other information that formed the core of the WMP and guided it into this final form.

Stakeholder Workshop

Representatives from the communities, institutions, and businesses in the subwatershed gathered at the St. Clair Shores City Hall building on January 20, 2005, to participate in a stakeholder workshop. Over 87 invited individuals attended the workshop hosted by Macomb County Public Works Office (MCPWO) and other SWAG partners. Participants represented the following interests:

- Churches
- Local businesses
- Community residents
- Recreation
- Regional planning
- Schools/universities
- Development
- Environmental/conservation groups
- Technical consultants
- County and municipal government
- State and federal government
The workshop consisted of the following:

- A presentation on the watershed planning process that included information on how the public could continue to participate;
- A facilitated brainstorming session where participants formed small groups and identified a list of watershed visions and desired uses. Each group then shared their input as facilitators compiled a single comprehensive list;
- A voting session where each participant had the opportunity to cast three votes as a way to narrow and prioritize the list;
- Another brainstorming session to develop a list of watershed issues and concerns; and
- Another voting session to narrow and prioritize the list of issues and concerns.

The ranked results of the brainstorming and voting process follow. The top five (including ties) in each list show a number indicating the percentage of votes cast for that item (out of the total number of votes).

### Stakeholder Workshop Visions and Desired Uses

<table>
<thead>
<tr>
<th>Rank</th>
<th>Visions and Desired Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eliminate Combined Sewer Overflows (CSOs) through sewer separation projects (12%)</td>
</tr>
<tr>
<td>2</td>
<td>Increase trees &amp; greenways to reduce runoff (9%)</td>
</tr>
<tr>
<td>3</td>
<td>Education of both citizens and legislators of environmental issues, especially headwaters and riparian landowners (9%)</td>
</tr>
<tr>
<td>4</td>
<td>Involve students &amp; schools in watershed (8%)</td>
</tr>
<tr>
<td>5</td>
<td>Partnerships &amp; International Cooperation needed for this project (7%)</td>
</tr>
<tr>
<td>6</td>
<td>Increase well &amp; septic inspections</td>
</tr>
<tr>
<td>7</td>
<td>Coordinated appeal for Federal Funding</td>
</tr>
<tr>
<td>8</td>
<td>Increase Household Hazardous Waste (HHW) collection times &amp; locations</td>
</tr>
<tr>
<td>9</td>
<td>Onsite Stormwater Management (i.e. rain gardens, filtration)</td>
</tr>
<tr>
<td>10</td>
<td>Encourage sustainable lifestyle</td>
</tr>
<tr>
<td>11</td>
<td>Promote active involved citizens</td>
</tr>
<tr>
<td>12</td>
<td>Review sewer operations for local communities and consider building additional Waste Water Treatment Plants</td>
</tr>
<tr>
<td>13</td>
<td>Stronger enforcement of existing ordinances, i.e. disconnect downspouts</td>
</tr>
<tr>
<td>14</td>
<td>Determine actual sources of pollution</td>
</tr>
<tr>
<td>15</td>
<td>Eliminate beach closings &amp; fish advisories</td>
</tr>
<tr>
<td>16</td>
<td>Identify lake users &amp; customers</td>
</tr>
<tr>
<td>17</td>
<td>Protect &amp; enhance riparian wetlands</td>
</tr>
<tr>
<td>18</td>
<td>Eliminate illicit discharges</td>
</tr>
<tr>
<td>19</td>
<td>Be able to swim safely in canals</td>
</tr>
<tr>
<td>20</td>
<td>Reduce illegal dumping</td>
</tr>
<tr>
<td>21</td>
<td>Reduce urban clear cutting</td>
</tr>
<tr>
<td>22</td>
<td>Develop better soil erosion control</td>
</tr>
<tr>
<td>23</td>
<td>Develop options for paint disposal</td>
</tr>
<tr>
<td>24</td>
<td>Prohibit use of liquid fertilizer</td>
</tr>
<tr>
<td>25</td>
<td>Ensure high quality drinking water</td>
</tr>
<tr>
<td>26</td>
<td>Eliminate weed problems &amp; non-native species</td>
</tr>
<tr>
<td>27</td>
<td>Road salt controls</td>
</tr>
<tr>
<td>28</td>
<td>Increase Public Access along Lake St. Clair</td>
</tr>
<tr>
<td>29</td>
<td>Better utilize internet &amp; cable TV</td>
</tr>
<tr>
<td>30</td>
<td>Control freighter discharge/ballast water</td>
</tr>
<tr>
<td>31</td>
<td>Control landscapers &amp; building contracts</td>
</tr>
<tr>
<td>32</td>
<td>Desire clean, odor free water -No dead wildlife or fish</td>
</tr>
<tr>
<td>33</td>
<td>Active-vibrant water front facilities</td>
</tr>
</tbody>
</table>

### Stakeholder Workshop Issues and Concerns

<table>
<thead>
<tr>
<th>Rank</th>
<th>Issues and Concerns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lack of funding (for both projects and research &amp; development) (17%)</td>
</tr>
<tr>
<td>2</td>
<td>Need public buy-in / voter approval (10%)</td>
</tr>
<tr>
<td>3</td>
<td>Educating people and communities on importance of water quality (10%)</td>
</tr>
<tr>
<td>4</td>
<td>Sanitary sewer overflows (8%)</td>
</tr>
<tr>
<td>5</td>
<td>Illegal dumping in river (7%)</td>
</tr>
<tr>
<td>6</td>
<td>Lack of enforcement</td>
</tr>
<tr>
<td>7</td>
<td>Lack of environmental considerations &amp; land use planning</td>
</tr>
<tr>
<td>8</td>
<td>Better characterization of problems and sources needed (fact sheets on issues)</td>
</tr>
<tr>
<td>9</td>
<td>Difficulty of implementing lifestyle changes</td>
</tr>
<tr>
<td>10</td>
<td>Lack of follow through to implementation</td>
</tr>
<tr>
<td>11</td>
<td>Need for coordination-common ground b/w government &amp; activists</td>
</tr>
<tr>
<td>12</td>
<td>Lack of time/staff/resources</td>
</tr>
<tr>
<td>13</td>
<td>Regulatory inflexibility</td>
</tr>
<tr>
<td>14</td>
<td>Increase public interest before problems occur</td>
</tr>
<tr>
<td>15</td>
<td>Misinformation- public &amp; media</td>
</tr>
<tr>
<td>16</td>
<td>Political and Jurisdictional arguments on who’s responsible</td>
</tr>
<tr>
<td>17</td>
<td>State recognition of local problems</td>
</tr>
<tr>
<td>18</td>
<td>Lack of recognition for good projects</td>
</tr>
<tr>
<td>19</td>
<td>Lack of trust of government</td>
</tr>
<tr>
<td>20</td>
<td>Conflicting interests-growth vs. conservation</td>
</tr>
<tr>
<td>21</td>
<td>Apathy &amp; ignorance-obstacles</td>
</tr>
<tr>
<td>22</td>
<td>Poor priorities by local government</td>
</tr>
</tbody>
</table>
Community Forum #1

Interested residents from the communities in the subwatershed met at the Grosse Pointe War Memorial building on February 3, 2005, to participate in a Community Forum. Over 49 individuals attended the forum hosted by MCPWO and other community partners participating on the SWAG. Although all participants were local residents, they also represented specific interests within their community, including:

- Churches
- County and municipal government
- Recreation
- Environmental / conservation groups
- Public institutions
- Development
- Schools
- Local businesses

The forum consisted of the following:

- Educational displays and activities for children, including a demonstration of how a watershed works using an EnviroScape® model;
- Informational displays for adults, provided by SWAG members;
- A session where attendees had the opportunity to share their ideas on the development of the WMP, including their visions and desired uses and the issues and concerns for the subwatershed;
- A voting session where each participant had the opportunity to cast three votes as a way to narrow and prioritize the comprehensive list of watershed visions and desired uses; and
- A watershed scavenger hunt, which also served as a raffle for assorted prizes provided by SWAG members and other watershed partners, such as the Huron-Clinton Metropolitan Authority.

The ranked results of the brainstorming and voting process follow. The top five in the Visions and Desired Uses list shows a number indicating the percentage of votes cast for that item (out of the total number of votes).

### Community Forum Visions and Desired Uses

1. County-wide protection of wetlands and woodlands (as well as shorelands) in upland areas (14%)
2. Make information readily available for Best Management Practices (13%)
3. Education of citizens to promote sustainable decision-making (consumption choices) (12%)
4. Standing site for household hazardous waste collection (8%)
5. Improved public education (8%)
6. Integrate watershed information as an “index” in local newspapers or a Watershed “Yellow book”
7. Porous pavement
8. Catch basin inserts and monitoring results
9. Frequent catch basin cleaning
10. Be able to fish and eat local fish
11. Integrate water quality information into existing community references and resources
12. Look at potential use of regional detention/retention basins
13. Use Great Lakes Commission Lake St. Clair Study
14. Eliminate/reduce paved surfaces
15. Native plantings
16. Utilize wastewater treatment plants for education
17. Septic tank inspections
18. Downspout disconnection

### Community Forum Issues and Concerns

None specifically mentioned at the meeting.
Focus Group
The SWAG planned a targeted focus group to obtain input from and the participation of lawn care and landscaping companies, a key stakeholder group in the subwatershed. According to the SWAG, lawn care and landscaping companies are important stakeholders because of the potential impact of their activities on the watershed. The focus group served as a mechanism for gaining meaningful input and buy-in for the WMP development process and future implementation. Without the buy-in from lawn care and landscaping companies, some goals of the WMP may be difficult to achieve.

The focus group was conducted as a series of phone calls in September 2005. The seven contacted companies received an introduction to the project and answered questions related to their customers, means of communication with other companies and with the public, the type of services provided, where they perform their services, and what practices they use to protect water quality. The overarching purpose of the meeting was to identify issues specific to this group for consideration in development of the WMP. The goals of this group are presented below:

- Educate the public to request more environmentally friendly practices from businesses; utilize Detroit Free Press gardening column;
- Encourage companies to use environmentally friendly practices / obtain Michigan Green Industry Association (MGIA) “Healthy Lawn Care Program” certification;
- Target do-it-yourselfers as well as businesses;
- Reduce customer reliance on end-results only; institute knowledge of the connection between lawn, street, storm drain, and stream; and
- Encourage industry training initiatives to spread environmentally friendly ideas/practices thus enhancing the local knowledge base.

The issues and concerns of this group include:

- Not fertilizing a lawn near a waterbody can actually be more harmful because as vegetation thins, the area is susceptible to erosion;
- Organic fertilization has the same ability to affect a waterbody as using synthetic materials. The issue isn’t what is used, but how it is used; and
- Cost is a mitigating factor in not being able to offer or sell environmentally friendly practices.

Community Forum #2 and Follow-up Comments
A second Community Forum took place at the Grosse Pointe Farms Community Building on September 18, 2006 for interested residents from the communities in the subwatershed. The structure of the forum was similar to the first held in February 2005. Macomb County provided activities for children and SWAG members provided informational displays for adults. SWAG members conducted a watershed scavenger hunt and raffle for various prizes. Participants also received pizza during the open house portion of the forum. The agenda for the forum consisted of a brief presentation on the status and content of the WMP, including an

Desired Uses
The public’s desired uses for the watershed have been elicited and summarized for the purposes of meeting Clean Michigan Initiative (CMI) grant funding requirements and assisting in development of the goals and objectives listed in Chapter 6. Note that the desired uses include, either explicitly or implicitly, the restoration and protection of designated uses (as defined in Chapter 3).

20 Years Ago
In 1986, a public meeting was held to seek public comments to facilitate the development of the first Clinton River Remedial Action Plan (MDNR, 1988). It is interesting to note: 1) some of the concerns raised as a gauge of how long certain problems have been around; and 2) some of the approaches suggested for pollution control as a gauge of how much progress has been made.

The following categories summarize the comments:

- The need for watershed-based permitting and modeling;
- Sedimentation;
- Cooperative approach between governmental entities and other stakeholders;
- Stormwater runoff issues – quality and quantity;
- Floodplain development;
- Polluted lands and other historic pollution sources;
- Sewer overflows;
- Wetland protection;
- Fish contaminants and health; and
- Other pollutants.
overview of how stakeholder input from the first Community Forum affected the development of subwatershed goals and objectives. The presentation also described the action items that communities in the subwatershed included in the WMP to fulfill their Phase II NPDES permit requirements and to obtain future grant money for implementation activities. Forum attendees then had the opportunity to provide feedback on the planned actions, the overall WMP, and voice their opinions on subwatershed issues. Approximately 18 individuals attended the forum hosted by MCPWO and SWAG members; of the 18 participants, four were local residents not affiliated with the SWAG. Participants represented several community partners participating on the SWAG, as well as local residents. Participants asked questions regarding pollutants of concern for the subwatershed and the baseline for assessing pollutant load reductions.

**Stakeholder Workshop #2**

To obtain stakeholder input toward the end of the WMP development process, SWAG members hosted a second stakeholder workshop on September 27, 2006 at the Macomb Intermediate School District Educational Service Center Facility. The workshop, referred to as the Joint Community and Business Forum, brought together representatives from the communities and institutions in the subwatershed, as well as the Red Run and Clinton River East subwatersheds. Approximately 70 individuals attended the workshop. Participants represented the following interests:

- Recreation
- State and Federal government
- Regional planning
- Schools/ universities
- Community residents
- Environmental / conservation groups
- County and municipal government

The workshop consisted of the following:

- A presentation on the nearly final content of the WMPs for each subwatershed. The presentation gave an overview of the goals and objectives developed using stakeholder input from stakeholder meetings conducted in 2005, as well as the pollutants of concern for each subwatershed and specific actions proposed to address each pollutant; and
- A facilitated session where participants had the opportunity to discuss the type of support necessary to ensure successful WMP implementation, the type of technical assistance needed to implement specific actions, and the type of tools to support successful implementation.

The facilitated discussion on technical assistance and tools necessary to promote successful WMP implementation generated the following feedback:

- Focus on public education regarding phosphorus-based fertilizer use and impacts;
- Identify opportunities for additional funding to conduct activities required under the Phase II NPDES permit;
- Create a mechanism that will provide a direct line of communication to exchange information at all levels of government;
• Create opportunities for local communities to exchange information on BMP successes and challenges;
• Identify and implement sustainable mechanisms to foster participation and information exchange by all communities;
• Focus on enforcing existing ordinances first, then identify where new or modified ordinances are necessary;
• Provide workshops on phosphorus reduction solutions; and
• Provide focused training for municipal employees on how to spot real problems in the watershed and what specific actions to take as a result.

In addition to the facilitated discussion, participants had the opportunity to provide input on the types of technical assistance necessary to implement WMP actions using a feedback form. The participants indicated that they anticipated needing assistance with several implementation actions and provided specific ideas on the type of assistance that would benefit their community. Results from the feedback form are provided in Table 4-1.

Table 4-1. Results from feedback forms.

<table>
<thead>
<tr>
<th>Action</th>
<th>Anticipate Needing Assistance?</th>
<th>What Type of Assistance Would Benefit Your Community or Business?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update Storm Water Pollution Prevention Initiatives</td>
<td>Yes (5)</td>
<td>General info (2), public seminars, samples; technical assistance</td>
</tr>
<tr>
<td>Develop Annual Reports</td>
<td>Yes (5)</td>
<td>Guidance, funding, subwatershed summary information</td>
</tr>
<tr>
<td>Implement Public Education Plan</td>
<td>Yes (8)</td>
<td>Guidance (examples/samples); help in talking to the public; information; funding; provide technical assistance</td>
</tr>
<tr>
<td>Train Municipal Employees</td>
<td>Yes (3), No (1)</td>
<td>General info – displays; train the trainer; any training materials</td>
</tr>
<tr>
<td>Develop and Implement Stormwater Management Standards</td>
<td>Yes (6)</td>
<td>Models; post suggested standard</td>
</tr>
<tr>
<td>Manage Development Patterns</td>
<td>Yes (3), No (1)</td>
<td>(re)development; too late</td>
</tr>
<tr>
<td>Preserve Natural Features</td>
<td>Yes (4), No (1)</td>
<td>Fundraising/easements/land purchase; post natural features inventory; assist with preservation activities</td>
</tr>
<tr>
<td>Maintain Storm Sewer Systems</td>
<td>Yes (3), No (1)</td>
<td>Guidelines (schedule); funding; identify county drains</td>
</tr>
<tr>
<td>Minimize Pollution from Roads, Parking Lots, Municipal Garages</td>
<td>Yes (3), No (1)</td>
<td>Guidelines (schedule); funding; any and all technical assistance</td>
</tr>
<tr>
<td>Implement Turf Management</td>
<td>Yes (3), No (1)</td>
<td>Any and all technical assistance</td>
</tr>
<tr>
<td>Implement Flood Control Water Quality Considerations</td>
<td>Yes (3)</td>
<td>Funding; any and all technical assistance</td>
</tr>
<tr>
<td>Correct Illicit Discharges</td>
<td>Yes (5)</td>
<td>Funding (3)</td>
</tr>
</tbody>
</table>
Participants assigned priority rankings to voluntary implementation actions (i.e., activities not required under the Phase II stormwater permit). Activities ranked as having the highest priority in LSCW are listed below.

Activities ranked as having the highest priority:
- Develop pollution prevention ordinances;
- Streambank, road, and ditch stabilization;
- Promote infiltration and filtration;
- RemEDIATE contaminated sediments; and
- Restore fishing opportunities.

Activities ranked as having the second highest priority:
- Post signage;
- Support public involvement activities;
- Educate and involve municipal officials;
- Repair bare soil;
- Use structural controls where necessary;
- Address existing impervious surfaces;
- Minimize failing septic systems;
- Identify, protect, and restore natural features; and
- Promote natural buffers.

Activities ranked as having the third highest priority:
- Continue community forums and stakeholder workshops;
- Identify and protect sensitive sites;
- Manage solid and animal waste;
- Develop marine pollution prevention program;
- Identify and protect sensitive sites;
- Coordinate with existing recreation programs; and
- Add and enhance boat access sites.

Participants also suggested project ideas that should be considered for implementation funding. Project ideas included:

1. Purchase natural areas to provide stormwater filtration and retention. Assist owners with easements;
2. Need low phosphorus fertilizer ID in garden stores countywide;
3. Native plants for stormwater control;
4. Urban parking lot stormwater management demonstration; use an average parking lot that does not have any BMPs; show what must be done to maintain (e.g., sump cleaning); and
5. Educate children and homeowners.
Presentations to Municipal Officials

Local appointed and elected officials are critical players in adopting the WMP and allocating resources toward its implementation. Obtaining buy-in and providing education to this group helps ensure the success of implementing the WMP. Local government leaders value the advice, concerns, and issues that community residents vocalize in terms of the watershed conditions of the past, present and future.

Members of the SWAG and other key stakeholders have made presentations to municipal officials throughout the watershed management planning process. These presentations are given during regular City Council, Township Board, and County Commissioner meetings. These meetings are a way to provide information on future meetings and improve participation. Many of the people that attended these meetings are potential community participants in public education meetings. SWAG members received a PowerPoint presentation to use at these types of meetings with municipal officials.

Public Education Plan

Public education is inherent in the public participation process. Before the public is interested or willing to participate, they need to have a basic understanding of the issues. A Public Education Plan (PEP) is designed to promote, publicize, and facilitate education to help raise the public’s awareness and motivate positive behavior in the watershed. Public support for watershed management programs will help to achieve the goals of the WMP.

In complying with the requirements of NPDES General Permit No. MIG619000 for Coverage of Storm Water Discharges for Municipal Separate Storm Sewer Systems Subject to Watershed Plan Requirements (or ‘Watershed-based Permit’), each community in the subwatershed prepared and submitted a PEP to the MDEQ.

The MDEQ explains that “an adequate PEP will implement the necessary amount of educational activities to ensure that the targeted sectors of the ‘public’ or audiences are reached with the appropriate message(s) for each education category.”

The Clinton River Watershed Council (CRWC) provided assistance in the design and implementation of educational activities undertaken as part of each community’s PEP. Each PEP identifies activities that the communities will implement, or assist with, to provide public education. These activities optimize existing programs and materials from regional organizations currently conducting public education such as the CRWC, the Southeast Michigan Council of Governments (SEMCOG), and the Michigan State University Cooperative Extension (MSUE) Program. By using and adapting existing outreach opportunities and materials, the communities are able to cost-effectively reach a broad audience with a consistent watershed protection message. Specific details concerning each community’s activities are available in their respective PEP, but some common elements include:

CRWC Display at Home and Garden Show – Detroit, MI

Courtesy of CRWC
A ‘Personal Watershed Stewardship Program’ with the following key messages:
- Definition of a watershed;
- Knowledge of what watershed an individual lives in and has an impact on;
- Importance of protecting watersheds; and,
- Ways that individuals can impact the watershed through their activities;

An ‘Ultimate Storm Water Discharge Location and Potential Impacts’ program with the following key messages:
- Storm drains discharge to waterbodies;
- Storm water discharged from separate storm sewer systems does not receive treatment prior to discharge;
- The environmental impacts of storm water pollutants in the watershed; and,
- Knowledge of the separate storm water drainage system in an individual’s neighborhood and the waterbody to which the storm water is discharged;

A ‘Reporting of Illicit Discharges’ program with the following key messages:
- Definition of an illicit discharge and what to look for;
- Promotion of the illicit discharge reporting system and how to report an illicit discharge;
- Water quality impacts associated with illicit discharges and improper waste disposal;
- Identification of failing on-site sewage disposal systems – physical symptoms to watch for; and,
- Consequences/penalties associated with illicit discharges and improper waste disposal;

A ‘Personal Actions that Can Impact the Watershed’ program with the following key message:
- Best management practices for each of the following actions:
  - Car, pavement, and/or power washing (preferred cleaning materials and practices);
  - Pesticide use, fertilizer use, and their disposal;
  - Management of grass clippings, leaf litter, and animal wastes;
  - Residential de-icer use; and
  - Native vegetation on residential properties as an alternative to turf grass. The impacts of residential car, pavement, and power washing on water quality; and
  - Effects of residential wastes on our water bodies;

A ‘Waste Management Assistance’ program with the following key messages:
- Identification of household hazardous wastes and available alternatives; and
- Disposal locations, requirements, and availability for household hazardous wastes and other chemicals, including motor vehicle fluids, travel trailer sanitary wastes, recreational boating sanitary wastes, and yard wastes; and
A ‘Management of Riparian Lands’ program with the following key messages:
- Importance of riparian corridors; and
- Best management practices for riparian lands, including:
  - Protection through use of conservation easements;
  - Lawn maintenance for water quality (no-mow and no-chemical application areas);
  - Landscaping for water quality;
  - Shoreline stabilization techniques;
  - Proper septic system maintenance; and
  - Proper management of grass clippings, leaf litter, animal wastes, and other wastes.

Each community and its partners (e.g., CRWC) will use a variety of mechanisms to implement the PEP, including: programs, presentations, education materials/guides, displays/signs, workshops/forums/trainings, volunteer monitoring/clean-ups/marking, mass media content, hotlines and a website.

Many other programs currently exist to educate the public and to help foster public involvement with watershed awareness, stormwater management, and water quality protection. Chapter 7 describes these programs in detail.

Summary

Public involvement and participation was actively sought throughout the development process of the watershed management plan through various meetings, workshops, and forums. This input, along with data obtained and presented in Chapters 2 and 3, was used to focus the analysis of watershed problems for Chapter 5. In addition, the public input concerning visions, desired uses, issues, and concerns along with the analytical results presented in Chapter 5 was used to formulate the goals and objectives that are presented in Chapter 6.

References

5. Problem Assessment & Stressor Summary

Introduction

Watershed management planning requires an understanding of the causes and sources of pollutants and other stressors (e.g., hydromodification) in the watershed, a quantifiable measurement of the pollutants and other stressors affecting the watershed, and a comparison of the current levels of pollutants and stressors against required water quality metrics (i.e., water quality standards). This information will indicate how much a pollutant or stressor must decrease to generate improvements in watershed conditions, as indicated by water quality standards and other types of water quality metrics.

This chapter presents significant information that is sometimes redundant with other chapters. This is because the analyses presented herein are best understood if all pertinent information is presented. Chapter 3 presented a detailed description of the causes and sources affecting conditions in the subwatershed, as well as the water quality metrics used to assess watershed conditions. Each of the causes and sources described in Chapter 3 result in one or more types of pollutants or stressors that adversely impact the watershed. This chapter provides a more detailed look at the primary pollutants and stressors generated by those causes and sources. This chapter also describes the analysis conducted to determine the percent reductions of specific pollutants and stressors necessary to improve water quality conditions, using water quality standards as the benchmark for measuring improvements.

It is important to note that the problem assessment and stressor summary for the subwatershed reflects the best sources of data available at the time of analysis. The analysis will change over time as a result of new data collected through the implementation of recent projects, such as updates to the plan entitled *A Comprehensive Management Plan for Lake St. Clair and the St. Clair River*, and changes in the metrics used to assess water quality data, such as the adoption of new numeric nutrient criteria or improved indicators to assess pathogens. Watershed management planning is an iterative and dynamic process that requires the use of adaptive management, allowing strategies to evolve as new information becomes available. The analysis contained in this chapter will require regular re-assessment and re-evaluation as new data become available to ensure that strategies and priorities reflect the most accurate and most recent information.

Status of Water Quality

To determine the status of water quality in the subwatershed, it is necessary to have 1) water quality monitoring data and 2) the applicable water quality standards. Water quality standards are the measuring stick to determine if water quality is good, fair, or declining. Water quality standards consist of three components: designated uses, criteria, and an antidegradation policy. The first components, designated uses and criteria, are essential for measuring water quality in the subwatershed.

Where water quality does not support these designated uses, water quality is considered to be impaired. To determine if water quality supports the designated uses, it is necessary to compare water quality monitoring data

What are stressors?
The term “stressor” refers to the pollutants and other undesirable factors that degrade water quality conditions. Stressors affecting a watershed might include pathogens, nutrients, trash and debris, sediment, and contaminated sediments. In addition to pollutants, other stressors might also come in the form of undesirable changes to the natural features of a watershed, such as changes to habitat and natural hydrology.

Purpose of this Chapter

This chapter is provided to meet the requirements of the Environmental Protection Agency’s 319 grant funding program. The analyses and discussions presented herein are intended only to act as a part of a pollutant load reduction framework and are not meant to imply commitments towards the Phase II permit.
from the subwatershed with numeric and narrative criteria — the second component of water quality standards.

As illustrated in the previous sections, a significant amount of water quality data and information have been collected at various locations since the early 1970s. Water quality has been sampled within the subwatershed at various locations since the early 1970s by a variety of agencies and organizations, including the Michigan Department of Environmental Quality (MDEQ) during their regular assessments of water quality throughout the State of Michigan. These monitoring data compared to water quality standards show that current water quality conditions in the subwatershed do not support designated uses. As a result, water quality in the subwatershed is impaired.

**Status of Designated Uses**

Based on the MDEQ-defined waterbody impairments and other information in Chapter 3, as well as the input summarized in Chapter 4, the designated uses that are threatened, those not being met, and those of indeterminate status have been identified and are presented in Table 5-1.

**Table 5-1. Status of designated uses.**

<table>
<thead>
<tr>
<th>Designated Use</th>
<th>Waterbody / Reach</th>
<th>Status</th>
<th>Stressor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Aquatic Life / Wildlife</td>
<td>All open channels</td>
<td>Impaired</td>
<td>Sediment</td>
</tr>
<tr>
<td>Other Aquatic Life / Wildlife</td>
<td>Milk River</td>
<td>Impaired</td>
<td>Low dissolved oxygen</td>
</tr>
<tr>
<td>Other Aquatic Life / Wildlife</td>
<td>All other inland lakes, reservoirs, impoundments</td>
<td>Threatened</td>
<td>Mercury in fish tissue (implied impacts to other aquatic life)</td>
</tr>
<tr>
<td>Other Aquatic Life / Wildlife</td>
<td>Lake St. Clair</td>
<td>Threatened</td>
<td>PCBs and Mercury in fish tissue (implied impacts to other aquatic life)</td>
</tr>
<tr>
<td>Warmwater Fishery</td>
<td>All open channels</td>
<td>Impaired</td>
<td>Sediment</td>
</tr>
<tr>
<td>Warmwater Fishery</td>
<td>Milk River</td>
<td>Impaired</td>
<td>Fish kills</td>
</tr>
<tr>
<td>Warmwater Fishery</td>
<td>Milk River</td>
<td>Impaired</td>
<td>Low dissolved oxygen (due to algae from nutrient elevation)</td>
</tr>
<tr>
<td>Warmwater Fishery</td>
<td>All other inland lakes, reservoirs, impoundments</td>
<td>Threatened</td>
<td>Mercury in fish tissue (implied impacts to other aquatic life)</td>
</tr>
<tr>
<td>Warmwater Fishery</td>
<td>Lake St. Clair</td>
<td>Threatened</td>
<td>PCBs and Mercury in fish tissue (implied impacts to other aquatic life)</td>
</tr>
<tr>
<td>Warmwater Fishery</td>
<td>All waterbodies</td>
<td>Threatened</td>
<td>Elevated PCB levels</td>
</tr>
<tr>
<td>Total Body Contact</td>
<td>Milk River</td>
<td>Impaired</td>
<td>Pathogens</td>
</tr>
<tr>
<td>Total Body Contact</td>
<td>Milk River</td>
<td>Impaired</td>
<td>Presence of algae from nutrient elevation</td>
</tr>
<tr>
<td>Total Body Contact</td>
<td>Lake St. Clair (Memorial Beach)</td>
<td>Impaired</td>
<td>Pathogens</td>
</tr>
<tr>
<td>Total Body Contact</td>
<td>Lake St. Clair (Pier Park Beach)</td>
<td>Impaired</td>
<td>Pathogens</td>
</tr>
<tr>
<td>Partial Body Contact</td>
<td>Milk River</td>
<td>Impaired</td>
<td>Pathogens</td>
</tr>
<tr>
<td>Partial Body Contact</td>
<td>Milk River</td>
<td>Impaired</td>
<td>Presence of algae from nutrient elevation</td>
</tr>
<tr>
<td>Partial Body Contact</td>
<td>Lake St. Clair (Memorial Beach)</td>
<td>Impaired</td>
<td>Pathogens</td>
</tr>
<tr>
<td>Partial Body Contact</td>
<td>Lake St. Clair (Pier Park Beach)</td>
<td>Impaired</td>
<td>Pathogens</td>
</tr>
</tbody>
</table>

---

1 The assessments presented herein are subject to change. New pollution sources, additional data, and updated water quality standards all might affect the status of the designated uses.
General Stressors
In addition to designated use impairments, the subwatershed also has beneficial use impairments that apply because it located in the overall Clinton River Area of Concern (AOC) in the Great Lakes basin, which addresses the nearshore area of Lake St. Clair impacted by the Clinton River and the Clinton River Spillway. To address these beneficial use impairments, stakeholders within the Clinton River Watershed are working together to develop an updated Remedial Action Plan (RAP). The updated RAP will describe the activities underway to restore the impaired beneficial uses and include the restoration criteria necessary to demonstrate when the beneficial use has been adequately restored. Currently, eight beneficial uses are considered impaired including: restrictions on fish and wildlife consumption, degradation of fish and wildlife populations, degradation of benthos, restrictions on dredging activities, eutrophication or undesirable algae, beach closings, degradation of aesthetics and loss of fish and wildlife habitat. While restoration of these beneficial uses is an important goal for the subwatershed, the restoration criteria do not have the same regulatory significance as Michigan’s water quality standards.

The assessments presented herein are subject to change. New pollution sources, additional data, and updated water quality standards all might affect the status of the designated uses.

The Lake St. Clair Environmental Characterization defines a broad set of stressors that affect lands tributary to the lake. These stressors include:

- Land Development and Urban Expansion
  - Stormwater
  - Habitat Fragmentation and Destruction
  - Fire Suppression
  - Agriculture
  - Soil Erosion and Sedimentation

- Altered Hydrology
  - Water Level Changes
  - Draining of Wetlands
  - Filling Wetlands and Dredging Waterbodies
  - Diking and Breakwalls

- Contaminants
  - Nutrient Loading
  - Toxic Contamination
  - Sediment Contamination

- Shoreline Modification, Shipping, and Boating
  - Vegetation Removal
  - Shoreline Hardening
  - Vessel Activity and Marina Development

- Invasive Species
  - Aquatic and Wetland Invasives
  - Terrestrial Invasives
  - Potential Invasives

- Natural Disturbances
  - Ice Storms
  - Windthrow
Obviously, not all of these stressors impact the subwatershed, nor are they necessarily at a scale appropriate for subwatershed planning. However, defining this framework allows one to see how this WMP fits into the bigger picture.

**Determining Significant Stressors**

A wide range of data and information are available on the Clinton River and Lake St. Clair. Review and analysis of recent data from studies and reports, also summarized in Chapter 3, helped to determine the most significant pollutants and stressors specifically in the subwatershed. Data and reports containing information on stressors used in this analysis include the following:

- Federal and state water quality monitoring data;
- Michigan Department of Environmental Quality’s 2006 Sections 303(d) and 305(b) Integrated Report containing the Water Quality Standards Nonattainment List for Water Bodies Requiring TMDLs;
- State biological monitoring data for fish and macroinvertebrates;
- Development of Restoration Criteria in the Clinton River Area of Concern (Draft Final 2005);
- Lake St. Clair Environmental Characterization (2004); and
- Clinton River Assessment (DRAFT 2005).

Based on all of the data analyzed, the status of designated uses and related stressors, and the general stressor list, it has been determined that the most significant stressors in the subwatershed (and the most appropriate to address at this scale) include the following:

- Sediment;
- Phosphorus;
- Pathogens;
- Contaminated sediments; and
- Habitat alterations.

Based on this list, the Subwatershed Advisory Group (SWAG) identified **sediment, phosphorus, and pathogens** as the top priorities to address in this plan, especially with respect to developing loading estimates and reduction targets.

**Method for Quantifying Stressors and Establishing Reduction Targets**

Significant stressors identified in the subwatershed will require strategic actions to reduce their impact on water quality and overall watershed health. To enable the selection and implementation of effective actions, it is important to first undertake an analysis that quantifies the stressor, identifies a numeric target, and determines if a reduction in the stressor is necessary to achieve the target. Quantifying the stressor for pollutants such as sediment, phosphorus, and pathogens, requires a way to determine how much of the pollutant is coming from particular sources in the subwatershed. The amount contributed by sources is referred to as the current pollutant load. The amount that sources should not exceed in order to achieve the numeric target is referred to as the target load. The method used to estimate the current and target pollutant loads for sediment and phosphorus in the subwatershed involves the use of a
**STEPL Model Inputs for Current Conditions**

The STEPL model is set up to run off of just a few basic inputs. Required input includes precipitation data from the nearest weather station, land use areas, number of septic systems in each watershed, and septic system failure rates. Separate estimates of loadings must be made for special pollutant sources such as wastewater treatment plants, industrial discharges, and CSOs.

**Precipitation and Soils**
The Detroit City Airport weather gage was used to estimate daily precipitation and air temperatures.

**Land Use**
Current land use data were obtained from SEMCOG.

**Septic Systems**
Approximately 0.12 square miles of the subwatershed are served by septic systems.

**Point Sources**
Information on combined sewer overflows from MDEQ’s website were used to estimate average annual loads from these sources.

**Sewer System Overflows**
Information on sanitary sewer overflows from MDEQ’s website was used to estimate average annual loads from these sources.

A computer model to evaluate the significance of the various pollutant sources.

Screening-level models are often used as a first step in quantifying pollutant sources to identify key issues requiring more in-depth study.

Loading of water, sediment, and nutrients in the subwatershed were simulated using the Spreadsheet Tool for the Estimation of Pollutant Load (STEPL) model (Tetra Tech, 2004). STEPL provides a simplified simulation of precipitation-driven runoff and sediment delivery, and is intended to be applied without calibration. Required inputs to the model include precipitation data from the nearest weather station, land use areas, number of septic systems in each watershed, and septic system failure rates. Separate estimates of loadings must be made for special pollutant sources such as wastewater treatment plants, industrial discharges, and CSOs. This approach was used for the subwatershed as opposed to the load duration curve approach used for other subwatersheds (e.g., Clinton River East and Red Run) because there are no flow gages located in the subwatershed and limited water quality monitoring data for sediment and phosphorus. The STEPL model does not estimate pathogen loads. Therefore, it is necessary to look at existing water quality monitoring data for pathogens to determine the impact of pathogen loading on water quality in the subwatershed.

Water quality monitoring data for sediment, phosphorus, pathogens, and other parameters originate from several water quality sampling sites used by the Macomb County Health Department to conduct Lake St. Clair water quality assessments. The Macomb County Health Department categorizes these sampling sites as off shore and near shore sites. Off shore sites are located approximately one-quarter mile from shore and include two sites adjacent to public beaches. Near shore sites include major outfalls to Lake St. Clair, including the mouths of the Clinton River and Spillway, urban storm drains, smaller rivers and creeks and retention basin discharge points. Figure 5-1 shows the locations of offshore and nearshore water quality sampling sites in Lake St. Clair. The annual Lake St. Clair water quality assessment reports provide the exact locations of these sites. It is important to note that the data collected at these water quality sampling sites are likely to reflect not only pollutant loads from the subwatershed, but also upstream subwatersheds discharged to Lake St. Clair via the Clinton River. In addition, there are no off shore or near shore sites in close proximity to the Grosse Pointes. The off shore and near shore sites that shown in figure 5-1 are the only existing water quality sampling sites that capture the pollutant contributions from the subwatershed. As a result, data from these stations are considered representative of the subwatershed with an understanding of their limitations in isolating estimated contributions from the subwatershed.
Figure 5-1. Location of water quality monitoring stations.
The remainder of this chapter examines the significant stressors identified in the subwatershed—sediment, phosphorus, and pathogens. Information provided for each significant stressor provides a summary of the sources, impacts, impairments, indicators, water quality standards, available data, pollutant load estimates and target reductions, critical areas, how to monitor progress and ideas for improvement.

**Sediment**

Sediment in urban watersheds is an important pollutant; causing problems and negative impacts while also transporting other pollutants that bind to sediment particles, including phosphorus. Quantitatively, sediment has been labeled the most important single pollutant in U.S. streams and rivers. Inorganic fine sediments are naturally present to some extent in all streams. However, in the last half century, excessive sediment generated by human activity has caused enormous damage to streams throughout North America (Waters, T.F. 1995).

Sediment transported by moving water is described by the terms “suspended load” and “bedload.” The suspended load is comprised by the fraction of material that is mixed intimately with the flowing water and tends to make the water appear muddy. The suspended load may be further segregated to include the suspended solids and the dissolved solids. Suspended solids will settle through the water based on their own density given an opportunity; however, solids are often sporadically and repeatedly caught in local turbulent eddies and remain suspended. The bedload is comprised of the larger particles too heavy to be suspended, but rather pushed along near the streambed (Leopold, 1994).

All streams require a degree of bedload transport to maintain their pools, riffles, and meanders. Some substrate movement is beneficial because it allows fine sediment to be flushed out of the spaces between larger particles and ultimately downstream. However, if there is too much substrate movement, the channel may be too unstable to support healthy fish and invertebrate populations.

**Sources**

The main sources of sediment are often the erosion of uplands, lateral movement of channels into streambanks, and down cutting of streambeds. Natural erosion is present almost everywhere and results from wind and water passing over land surfaces. Table 5-2 identifies some general sources and causes of sediment based on human activity.

In the subwatershed, the predominant general source of sediment is stormwater runoff from urbanized areas. Information on streambank conditions, road stream crossings, street and stormdrain conditions, and potential hot spots reveal more specific potential sources of sediment in the subwatershed that contribute to the overall load estimated for urban runoff. Information from recent volunteer assessments provide good information on these potential causes. A detailed discussion of the volunteer assessments is provided in Chapter 3.
A summary of existing data for bank conditions in the subwatershed is shown in Figure 3-6 in Chapter 3. The bank conditions are classified as ‘good’, ‘fair’, or ‘poor’ based on ratings from previous and recently collected data. Data from the Clinton River Watershed Council (CRWC, 2005) from 1999 to 2004 noted good conditions on the Milk River at Jefferson Road. In 2005, field data collected by the MCPWO and volunteers (refer to the ‘Visual Assessment’ section of the plan in Chapter 3) documented good conditions at both surveyed locations on the Cottrell Drain, both locations on the Milk River, and two of four locations on the Roseville-Clinton Drain. Fair conditions were documented on the single Tebo Creek site and one Roseville-Clinton site, and poor conditions were documented at the remaining Roseville-Clinton drain sites. As noted in Chapter 3, nearly all of the shoreline and the canals in the subwatershed are protected by either concrete/steel sheet piling or earthen and sandbag dikes. There are only three locations in the subwatershed where the artificial shoreline is broken to allow for small beaches (GLC, 2004).

A unified stream assessment (of approximately ½ mile) was conducted at one located in the subwatershed: the Cottrell Drain between Union Lake Road and Jefferson Street. The assessed reach is a fairly accessible stream with a suboptimal buffer width of 25-50 feet. The surrounding land use is residential with the shrubs or old fields identified as the predominant floodplain vegetation. Sediment deposition and invasive plant species were identified as the most substantial problems in the reach. One crossing has significant sediment deposition and is recommended for restoration by sediment removal. All of the neighborhoods had curb and gutter. The neighborhood source assessment revealed that only 45 percent of the assessed neighborhoods in the subwatershed had ‘clean and dry’ curb and gutter. Organic material, such as leaves and lawn clippings, sediment, and animal waste had the largest pollution source potential in the curb and gutter.

The streets and stormdrain assessment performed in the subwatershed indicated that 50 percent of the locations had documented instances of
cracked roads; deteriorating concrete has the potential to elevate sediment loads in urban runoff. Thirty-eight percent (38\%) of the street areas allowed on-street parking, which requires more impervious area than streets without parking and also may interfere with street sweeping efforts, resulting in increased sediment loads in runoff.

The hotspot investigation revealed one of five assessed sites was covered by bare soil, a condition that has very high potential for increased erosion and sedimentation.

Urban stormwater runoff also affects how well the sanitary sewer systems and the combined sewer systems (i.e., sanitary wastewater and stormwater) in the subwatershed function during wet weather events. During large wet weather events, too much stormwater runoff infiltrating sanitary sewer lines can lead to sanitary sewer overflows (SSOs). This type of overflow results in untreated sewage entering nearby waterbodies. Data reported to MDEQ on the frequency of SSOs indicate that a total of 16 SSOs occurred in the subwatershed between 2000 and 2006, discharging directly to Lake St. Clair. The untreated SSOs are likely to contain sediment from the stormwater infiltrating the system. Combined systems are intended to convey both sanitary wastewater and stormwater runoff; however, large wet weather events might cause wastewater treatment plants to exceed their treatment capacity and lead to a combined sewer overflow (CSO) that discharges partially treated wastewater. There are three retention and treatment facilities (RTFs) in the subwatershed that have reported CSO discharges to Lake St. Clair and the Milk River. Data from MDEQ show that between 2000 and 2006, a total of 76 CSOs discharged to Lake St. Clair and 54 CSOs discharged to the Milk River from these facilities. Stormwater runoff traveling through a combined system is also likely to carry sediment; however, CSOs are partially treated and are likely to have a smaller load than untreated SSOs. Chapter 2 provides a discussion of these RTFs located in the subwatershed.

**Impact and Impairment**

Suspended sediment, through turbidity, reduces light penetration through the water thus reducing photosynthesis. Fish in nature avoid streams or stream reaches with high suspended sediment levels creating environments just as devoid of fish as if they had been killed. Deposited sediment increase the level of embeddedness of the stream bed (termed habitat reduction) resulting in a decrease of invertebrate populations and consequently in food available to fish. Embeddedness refers to the extent to which gravel and cobbles are surrounded or covered by fine sediment. Decay of deposited organic sediments can also negatively affect in-stream dissolved oxygen concentrations. This is known as the sediment oxygen demand (SOD).

**Indicators**

Direct measurement of the amount of sediment moving in the watercourse may be measured as the total suspended solids (TSS), total dissolved solids (TDS) and the bedload. Turbidity indirectly measures the amount of sediment by considering the amount of light passable through the water column. Conductivity may also be used to indirectly measure the dissolved solids.
In addition, indicators such as the embeddedness and fish and benthic macroinvertebrate population and diversity may also be used as indicators of sediment.

**Water Quality Standards**

The water quality standards in Michigan pertaining to sediment do not include any numeric values to serve as a benchmark for assessing the amount of sediment in a water body. As a result, it is necessary to develop a numeric target for sediment. For purposes of this watershed management plan, a preliminary numeric target for sediment was selected by evaluating data from Ohio reference sites within the same ecoregion as the subwatershed (OEPA, 1999). This preliminary numeric target uses TSS as the indicator because suspended solids provide an estimate of the potential magnitude of sediment as a stressor and the primary sediment sources. The subwatershed is located in the Huron-Erie Lake Plain ecoregion and the 90th percentile TSS values of reference sites within this ecoregion are approximately:

- Headwaters (< 20 square miles): 50 mg/L
- Wadeable (20 < 200 square miles): 65 mg/L
- Small Rivers (200 < 1000 square miles): 75 mg/L

The TSS value for small rivers applies to the subwatershed and is used as the benchmark to determine if current sediment loads meet water quality standards.

**Current and Target Load Estimates to Calculate Load Reduction Percentages**

The TSS target value presented above serves as the numeric goal for suspended solids in the subwatershed. Recent water quality monitoring data indicate whether current TSS concentrations meet or exceed the target value. Table 5-3 contains recent water quality monitoring data for TSS and compares the data with the TSS target value. Where the average of TSS samples exceed the target value, a percent reduction in the concentration necessary to meet the target value is provided. In addition, the number of samples from the total number of samples (reflected in the “count” column) exceeding the target value is provided to indicate the frequency of exceedances. If flow data were available for the subwatershed, these water quality monitoring data could be used to estimate the current sediment load and the target sediment load necessary to meet the target value.

**Load Reduction Goals by Catchment**

Given no flow data are available, the STEPL model has been used to estimate current and target sediment loads in the subwatershed, as well as the estimated percent load reduction necessary to meet the target value. Table 5-4 presents the estimated loads and load reductions generated through STEPL.

It is important to keep in mind that the STEPL model does not estimate sediment loads from streambank erosion or account for upstream sediment load contributions (Tetra Tech 2004); therefore, the estimated loads are likely to be less than the actual sediment load from each catchment – particularly those experiencing streambank erosion as documented in Chapter 3.
Table 5-3. TSS water quality monitoring data compared to target value.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Period of Record</th>
<th>Count</th>
<th>Avg. (mg/L)</th>
<th>Target Value (mg/L)</th>
<th>Reduction (%)</th>
<th># of Exceedances</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>13</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N10</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>8</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N11</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>4</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N12</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>9</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N13</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>7</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N14</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>7</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N15</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>2</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N16</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>5</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N17</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>13</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N18</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>4</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N19</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>19</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N2</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>29</td>
<td>65</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>N20</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>10</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N21</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>14</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N4</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>3</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N6</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>2</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N9</td>
<td>5/7/1998 - 9/9/1999</td>
<td>6</td>
<td>5</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O10</td>
<td>5/19/1998 - 9/21/1999</td>
<td>6</td>
<td>2</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O11</td>
<td>5/19/1998 - 9/21/1999</td>
<td>6</td>
<td>2</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O6</td>
<td>5/19/1998 - 9/21/1999</td>
<td>6</td>
<td>5</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O8</td>
<td>5/19/1998 - 9/21/1999</td>
<td>6</td>
<td>14</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O9</td>
<td>5/19/1998 - 9/21/1999</td>
<td>6</td>
<td>5</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5-4. Estimated existing annual loads and associated reductions by catchment.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Existing Load (t/yr)</th>
<th>Target Load (t/yr)</th>
<th>Load Reduction (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>66</td>
<td>177</td>
<td>0</td>
</tr>
<tr>
<td>Lake North</td>
<td>601</td>
<td>771</td>
<td>0</td>
</tr>
<tr>
<td>Lake South</td>
<td>239</td>
<td>280</td>
<td>0</td>
</tr>
</tbody>
</table>

The total estimated sediment load for each catchment and the applicable percent load reduction provide the total estimated load reduction for each catchment. Given that the STEPL model does not account for streambank erosion, an additional 10 percent is added on to the estimated load. The additional 10 percent is an arbitrary number and may be higher or lower than the amount contributed by actual streambank erosion. This percentage will be updated if and when better data on contributions from streambank erosion become available. Table 5-5 presents the estimated total sediment load from each catchment, including the additional 10 percent of the original estimated load to account for streambank erosion. No additional load to account for streambank erosion was added to Grosse Pointe because no open channels exist in this catchment. Table 5-6 presents the final estimated load reduction by catchment.
Table 5-5. Estimated annual TSS load and additional load to account for streambank erosion by catchment

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Estimated Sediment Load (ton/year)</th>
<th>Additional Load to Account for Streambank Erosion (10%)</th>
<th>Total Estimated Sediment Load (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>66</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>Lake North</td>
<td>601</td>
<td>60</td>
<td>661</td>
</tr>
<tr>
<td>Lake South</td>
<td>239</td>
<td>24</td>
<td>263</td>
</tr>
</tbody>
</table>

Table 5-6. Final estimated sediment load reduction needed by catchment

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Estimated Sediment Load Reduction Needed (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>0 No reduction necessary at this time.</td>
</tr>
<tr>
<td>Lake North</td>
<td>0 No reduction necessary at this time.</td>
</tr>
<tr>
<td>Lake South</td>
<td>0 No reduction necessary at this time.</td>
</tr>
</tbody>
</table>

Critical Areas

Critical areas are the geographic portions of a watershed that contribute the greatest amount of a pollutant and have the most significant impact on the watershed. Identifying critical areas is an important step when determining how to achieve the TSS load reductions necessary to meet the TSS target value. The most significant sources of sediment loading in the subwatershed are stormwater runoff from urban land uses (e.g., commercial, industrial, institutional, transportation, multi-family dwellings, vacant developed land, and open space). Figure 5-2 presents a comparison of the relative contributions of sediment loading from different sources by catchment.

Figure 5-2. Estimated sediment load by source and catchment.

Although the STEPL model results provide only an estimate, the information is helpful in understanding the relative contributions of sediment loading from sources within each catchment of the
subwatershed and how to prioritize these sources when selecting management practices to achieve load reductions.

Defining critical areas for sediment in the subwatershed requires consideration of the results from the STEPL model. These results represent estimated data for catchment loads and relative load contributions from sources within each catchment. No catchments require sediment load reductions at this time to meet the TSS target value, based on the results from the STEPL model. Therefore, selecting critical areas in the subwatershed for sediment requires examining how close the existing sediment load is to the target load. With the additional 10 percent added to account for potential streambank erosion contributions, the Lake North catchment existing load is only 14 percent under the target load and the Lake South catchment existing load is only 6 percent under the target load. As a result, sources of sediment within these catchments should be considered in the critical area analysis. Based on the estimated existing and target TSS loads, and estimated source contributions of the sediment load, the critical areas to address in the subwatershed include those described below.

1 Urban Runoff in the Lake South catchment

The Lake South catchment is estimated to be only six percent under the target load for the TSS target value. As a result, it is advisable that proactive measures are taken to ensure that existing sediment loads do not increase. The STEPL model has estimated that SSOs and CSOs contribute the most significant amount of sediment to the catchment. Of the 76 CSOs discharging to Lake St. Clair (2000-2006), 73 originated from the Lake South catchment. Of the 16 recorded SSOs in the subwatershed during 2000-2003, six occurred in this catchment. The CSOs that occurred between 2003 and 2005, the timeframe for the data used in the STEPL model to determine sediment load contributions from CSOs and SSOs, discharged an average of 220 million gallons of partially treated sewage to Lake St. Clair per year. The six SSOs that occurred most recently in 2003 at the Martin RTF contributed an average of 40 million gallons of untreated sewage. Stormwater management encourages infiltration and runoff retention; therefore, effective stormwater management in Lake South will help to reduce the quantity of stormwater runoff infiltrating the sanitary sewer system and entering the combined sewer system, ensuring that the systems do not exceed their design capacity.

Effective stormwater management in urban areas of this catchment will also help to reduce the sediment load attributed to urban runoff that travels through the municipal separate storm sewer system and discharges directly to Lake St. Clair. Only two sites in the Lake South catchment along the Milk River were assessed as part of the unified and visual assessments described in Chapter 3. Based on the findings from these assessments, the two sampling sites near the Milk River did not exhibit poor conditions for streambank conditions or road stream crossings. The Lake South catchment does contain approximately 27.5 percent impervious cover, the second highest of the three catchments in the subwatershed. Impervious cover is linked to both the quantity and quality of stormwater runoff. The neighborhood source assessment of the subwatershed indicated that 73 percent of assessed neighborhoods had high sediment pollution potential.
2 Urban Runoff in the Lake North catchment
The sediment loading in the Lake North catchment is 14 percent lower than the target load. Although no sediment load reductions are necessary at this time according to STEPL estimates, it is important to ensure that sediment loads do not increase over time. The Lake North catchment has 31.9 percent impervious cover – the highest in the subwatershed. Of the eight monitoring sites located in the Lake North catchment, only a total of three sites show fair or poor streambank conditions. The neighborhood source assessment of the subwatershed indicated that 73 percent of assessed neighborhoods had high sediment pollution potential. The subwatershed streets and storm drains assessment showed that 50 percent of the assessed locations had cracked streets and 38 percent of the street areas allow on-street parking that results in more impervious cover and can obstruct with street sweeping operations. Effective stormwater management through innovative stormwater techniques can help maintain sediment loads under the target load to ensure water quality meets the TSS target value.

3 Soil Erosion from Construction Related Activities
These areas are problems particularly when immediately adjacent to a water course or in an urbanized area with direct access to a storm sewer system. Although these areas were not considered in the STEPL model, it is well documented that soil erosion from construction related activities is a severe problem in rapidly developing areas and contributes significant sediment loads to the waterways. Although most of the subwatershed is built out, there are opportunities for redevelopment. It is important to note that construction-related soil erosion control is addressed through a permitting program discussed in more detail in Chapter 7, and does not fall under the scope of this plan.

Monitoring Progress
Monitoring the reductions in the sediment load requires continued monitoring of TSS, as well as other indicators of sediment (e.g., turbidity, conductivity, benthic macroinvertebrates, pebble counts). The Macomb County Health Department conducts ongoing monitoring through its Surface Water Sampling Program, which includes turbidity and, until recently, TSS monitoring. The Clinton River Watershed Council’s Stream Leaders student water quality monitoring program monitors turbidity and benthic macroinvertebrates.

Monitoring is recommended to include TSS to establish trends that build off of the existing dataset that serves as baseline data. In addition to monitoring for purposes of trend analysis, monitoring plans should also measure management practice effectiveness to determine if management practice implementation is successfully reducing sediment loading from sources in the subwatershed.

Future monitoring needs include flow and TSS water quality monitoring in all catchments of the subwatershed, where possible (e.g., where open channels exist), to generate a dataset that is more specific to the subwatershed and isolates the pollutant loads from sources in the subwatershed.

Chapter 9 presents the specific monitoring protocols to be implemented in support of this plan.
**Improvement Ideas**

In the Lake South and Lake North catchments, good housekeeping practices such as street sweeping and catch basin cleaning will help to reduce sediment loads. In addition, management practices that promote infiltration while reducing the direct connection of impervious areas to the storm sewer drainage system will decrease sediment loads. These types of management practices include porous pavement, green roofs, bioinfiltration, retention, detention and other low impact development techniques. In addition, the use of swirl separators or sediment traps is another alternative.

The road stream crossing survey, focused on the Lake North and Lake South catchments, revealed a lack of 100-foot buffer on each side of waterbodies. The unified stream assessment in the subwatershed focused on sites located in the Lake North catchment near the Cottrell Drain; findings indicated that one stream crossing has significant sediment deposition and is recommended for restoration by sediment removal. One assessment site on the Roseville-Clinton Drain (RCRB-04) was determined to have poor streambank conditions. Stabilizing exposed soil adjacent to the streambanks and eroding streambanks may typically be accomplished with a vegetative approach (bioengineering). Some streambanks with extremely fast moving water next to it may require the use of hard armoring but in most cases other bioengineering techniques area available to divert or stabilize the forces from the moving water.

Chapter 8 presents the specific actions to be taken towards achieving loading reductions for sediment, as well as other significant stressors.

**Phosphorus**

Nutrients, both nitrogen and phosphorus, are essential to aquatic ecosystems. However, high levels of nutrients can have a negative impact on water quality. Of the two nutrients, phosphorus is typically in short supply in fresh water and, as the limiting factor for algal growth, has the greatest potential for adversely impacting water quality. Phosphorus stimulates the growth of plankton and other aquatic plants consumed by fish and other animals. Thus, phosphorus is necessary for a productive and diverse aquatic ecosystem. However, elevated levels of phosphorus can lead to excessive aquatic plant growth and throw off the balance of ecosystem production and consumption. Too many aquatic plants with too few consumers means that plants start to decompose, dissolved oxygen levels needed to support aquatic life begin to drop, and fish and aquatic animal populations begin to decline.

Phosphorus usually exists in nature as part of a phosphate molecule. In a watershed, phosphorus is found as either organic or inorganic phosphate and can either be dissolved in water or suspended in water by attaching to particulate matter (e.g., sediment). Phosphorus cycles through a watershed and is constantly changing form. As it cycles, phosphorus usually moves downstream, dissolved in water and suspended in the water as decomposing plant and animal tissue. Phosphorus attached to particulate matter settles in bottom sediment, where it is used by some benthic macroinvertebrates or covered by additional sediment; when the bottom is stirred, phosphorus re-enters the water column and becomes available again to aquatic plants.
Sources
Phosphorus enters a watershed through both human and natural sources, although contributions from human sources are typically far greater than contributions from phosphate deposits and phosphate rich-rocks. The main sources of phosphorus in a watershed are usually from wastewater treatment plants, fertilizer from residential lawns, animal waste, failing septic systems, soil erosion from stream banks and construction sites, and stormwater runoff from urban areas. Table 5-7 identifies some general sources and causes of phosphorus based on anthropogenic influences.

Table 5-7. General sources of phosphorus.

<table>
<thead>
<tr>
<th>Sources</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential Illicit Connections</td>
<td>Function of Design Criteria</td>
</tr>
<tr>
<td></td>
<td>Unnecessary Inflow</td>
</tr>
<tr>
<td></td>
<td>Poor Construction and Maintenance</td>
</tr>
<tr>
<td></td>
<td>Increased Development with Poor Stormwater Planning</td>
</tr>
<tr>
<td>Animal Waste (Non-Agricultural)</td>
<td>Pet Owners Not Picking Up Waste</td>
</tr>
<tr>
<td></td>
<td>Lack of Buffer</td>
</tr>
<tr>
<td></td>
<td>Wildlife</td>
</tr>
<tr>
<td>Failing Septic Systems</td>
<td>Poor Maintenance</td>
</tr>
<tr>
<td></td>
<td>Poor Construction</td>
</tr>
<tr>
<td></td>
<td>Poor Design</td>
</tr>
<tr>
<td></td>
<td>Overloaded</td>
</tr>
<tr>
<td></td>
<td>Used beyond design life</td>
</tr>
<tr>
<td>Leaky Sanitary Sewer</td>
<td>Poor Design</td>
</tr>
<tr>
<td></td>
<td>Poor Construction</td>
</tr>
<tr>
<td></td>
<td>Poor Maintenance</td>
</tr>
<tr>
<td>Sanitary Sewer Overflows (SSOs)</td>
<td>Excessive Infiltration</td>
</tr>
<tr>
<td></td>
<td>Stormwater Inflow</td>
</tr>
<tr>
<td></td>
<td>Increased Development</td>
</tr>
<tr>
<td></td>
<td>Inadequate storm drainage</td>
</tr>
<tr>
<td>Combined Sewer Overflows (CSOs)</td>
<td>Limited Treatment Capacity</td>
</tr>
<tr>
<td></td>
<td>Increased Stormwater Runoff from Impervious Surfaces</td>
</tr>
<tr>
<td></td>
<td>Increased Development</td>
</tr>
<tr>
<td>Residential Yard Waste</td>
<td>Poor Maintenance</td>
</tr>
<tr>
<td></td>
<td>Poor Design of Facility</td>
</tr>
<tr>
<td>Fertilizer Use (Non-Agricultural)</td>
<td>Fertilizer Application</td>
</tr>
<tr>
<td></td>
<td>Lack of Buffer</td>
</tr>
<tr>
<td>Increase in Naturally Occurring Sources</td>
<td>Loss of Wetlands</td>
</tr>
<tr>
<td>Dumpsters</td>
<td>Poor Construction</td>
</tr>
<tr>
<td></td>
<td>Poor Maintenance</td>
</tr>
<tr>
<td>Golf Courses</td>
<td>Fertilizer Application</td>
</tr>
<tr>
<td></td>
<td>Lack of Buffer</td>
</tr>
<tr>
<td>Publicly Owned Treatment Works (POTWs)</td>
<td>Plant Effluent Limits</td>
</tr>
<tr>
<td></td>
<td>Poor Design</td>
</tr>
<tr>
<td></td>
<td>Poor Maintenance</td>
</tr>
<tr>
<td>Atmospheric Deposition</td>
<td>Causes Not Appropriate for this Plan but Education Needed</td>
</tr>
</tbody>
</table>

In the subwatershed, the likely predominant source of phosphorus is stormwater runoff from urban areas. Information collected during the unified subwatershed and site reconnaissance (USSR) assessment, including the neighborhood site assessment, the streets and storm drains survey, the hotspot inventory, on streambank conditions, road stream crossings, street and stormdrain conditions, and potential hot spots reveal more specific potential sources of sediment in the subwatershed that
contribute to the overall load estimated for urban runoff. A detailed discussion of the USSR assessments is provided in Chapter 3. Results from the neighborhood site assessment show that in all but one neighborhood at least 67% of lots had moderately to highly maintained turf grass. Highly managed turf grass is often the source of nutrients from fertilizer, grass clippings, and other yard waste – all sources of phosphorus. All of the neighborhoods had curb and gutter. Only 45% of the neighborhoods were assessed as having ‘clean and dry’ curb and gutter. Organic material, such as leaves and lawn clippings, sediment, and animal waste had the largest pollution source potential in the curb and gutter. The hotspot investigation revealed that grass constituted the largest percent of turf and landscape area at two sites, which both were considered to have moderately maintained turf. Moderately maintained turf can be a source of pollution from nutrients (fertilizers, grass clippings, leaves), pesticides, and herbicides. Bare soil covered all of another site. Erosion and sediments are more likely with bare soil.

Loss of natural features, particularly wetlands and riparian buffers, that assist in filtering stormwater can contribute to increased phosphorus loads. Currently, wetland coverage in the subwatershed is 0.6% of land area. The Lake - North catchment is 1.6% wetlands and accounts for 97% of the subwatershed total. The other catchments have less than 0.1% of their land as wetland. The lack of wetlands for the subwatershed as a whole can be attributed in part to the intense urban development of these areas.

In addition to discharges from the municipal separate storm sewer system, stormwater runoff from urban areas can impact other types of sewer systems and effect the phosphorus load contributions from these sources. Currently, over 99% of the land area in the subwatershed is served by sanitary or combined sewers. The Grosse Pointe catchment is 62% combined sewers and the Lake - South catchment is 58% combined sewers. During wet weather, the flow from the sewers in the Lake-North catchment and most of the sewers in the Lake-South catchment may enter the Martin Retention and Treatment Facility (RTF) and/or the Chapaton RTF in St. Clair Shores if the flows in the system exceed the allowable discharge rate in the DWSD interceptor. Additionally, the flows from some of the combined sewers in the Grosse Pointe catchment and a small portion of Lake – South catchment may enter the Milk River RTF in Grosse Pointe Woods during wet weather. At any of these three locations, if the storage volume capacity is reached, additional flow is partially treated before being discharged to Lake St. Clair (at the Martin and Chapaton RTFs) or the Milk River (at the Milk River RTF). Only 0.12 square miles of the subwatershed (all in the Lake - North catchment) is not currently serviced and this area is expected to be converted to sanitary sewers by 2030.

Marinas are also potential sources of phosphorus, particularly if boaters do not properly dispose of sanitary waste from their boats. There are seven marinas identified in the Lake – South catchment. Crescent Sail Yacht Club, Grosse Pointe Park Park, Grosse Point Farms Pier, the Grosse Pointe Yacht Club, the Grosse Pointe Club, and the Grosse Pointe Municipal Pier are present in the Grosse Pointe catchment.

Due to the relationship of phosphorus to sediment, sources of sediment are also likely sources of phosphorus. These include streambank erosion,
construction activities, and hydrological impacts that affect both erosion and stirring of bottom sediments.

**Impact and Impairment**
Excessive levels of phosphorus can cause accelerated plant growth and algae blooms that can interfere with aesthetic and recreational uses of water. Decay of algae blooms and aquatic plants can cause odors and the suspended particulate matter can lead to increased turbidity, which reduces light penetration and increases water temperature. Decaying plant and animal tissue requires oxygen, resulting in decreased in-stream dissolved oxygen (DO) concentrations. Low DO levels can negatively impact fish and other important aquatic animals (e.g., benthic macroinvertebrates).

**Indicators**
Direct measurements of the amount of phosphorus in the watercourse typically focus on measuring orthophosphate using tests that measure total orthophosphate, total phosphorus, dissolved phosphorus, soluble reactive phosphorus, or insoluble phosphorus. Total phosphorus and soluble reactive phosphorus are most commonly used to measure phosphorus in lake and river systems, respectively.

Indirect indicators of phosphorus vary depending on the type of impacts the indicator is intended to measure. For example, if the concern is impact to aquatic life, the indirect indicators for phosphorus could include biological indicators such as fish and benthic macroinvertebrates; periphyton (benthic algae) biomass; dissolved oxygen levels; or pH. When concerned about impacts to recreation, appropriate indirect indicators of phosphorus might include periphyton biomass or water quality (EPA 1999).

**Water Quality Standards**
The water quality standards in Michigan pertaining to phosphorus do not include any numeric values to serve as a benchmark for assessing the amount of phosphorus in a water body. As a result, it is necessary to develop a numeric target for phosphorus. The Macomb County Health Department uses a numeric target of 0.05 mg/L for total phosphorus (TP) (Macomb County Health Department, 2002). Until MDEQ develops and adopts new numeric nutrient criteria, this analysis applied the numeric target value for TP used by Macomb County at this time.

**Current and Target Load Estimates to Calculate Load Reduction Percentages**
The TP target value presented above serves as the numeric goal for phosphorus in the subwatershed. Recent water quality monitoring data indicate whether current TP concentrations meet or exceed the target value. Table 5-8 contains recent water quality monitoring data for TP and compares the data with the TP target value. Where the average of TP samples exceed the target value, a percent reduction in the concentration necessary to meet the target value is provided. In addition, the number of samples exceeding the target value is provided to indicate the frequency of exceedances. If flow data were available for the subwatershed, these water quality monitoring data could be used to estimate the current TP load and the target TP load necessary to meet the target value.
Table 5-8. TP water quality monitoring data compared to target value.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Period of Record</th>
<th>Count</th>
<th>Avg. (mg/L)</th>
<th>Target Value (mg/L)</th>
<th>Reduction (%)</th>
<th># of Exceedances</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>5/7/1998 - 9/8/2005</td>
<td>22</td>
<td>0.06</td>
<td>0.05</td>
<td>-13%</td>
<td>8</td>
</tr>
<tr>
<td>N10</td>
<td>5/7/1998 - 9/13/2001</td>
<td>12</td>
<td>0.03</td>
<td>0.05</td>
<td>-3%</td>
<td>2</td>
</tr>
<tr>
<td>N11</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.02</td>
<td>0.05</td>
<td>-2%</td>
<td>2</td>
</tr>
<tr>
<td>N12</td>
<td>5/7/1998 - 9/13/2001</td>
<td>12</td>
<td>0.04</td>
<td>0.05</td>
<td>-2%</td>
<td>6</td>
</tr>
<tr>
<td>N13</td>
<td>5/7/1998 - 9/13/2001</td>
<td>12</td>
<td>0.04</td>
<td>0.05</td>
<td>-2%</td>
<td>3</td>
</tr>
<tr>
<td>N14</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.09</td>
<td>0.05</td>
<td>-41%</td>
<td>5</td>
</tr>
<tr>
<td>N15</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.11</td>
<td>0.05</td>
<td>-55%</td>
<td>2</td>
</tr>
<tr>
<td>N16</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.04</td>
<td>0.05</td>
<td>-9%</td>
<td>1</td>
</tr>
<tr>
<td>N17</td>
<td>5/7/1998 - 9/8/2005</td>
<td>24</td>
<td>0.03</td>
<td>0.05</td>
<td>-9%</td>
<td>2</td>
</tr>
<tr>
<td>N18</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.02</td>
<td>0.05</td>
<td>-9%</td>
<td>2</td>
</tr>
<tr>
<td>N19</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.11</td>
<td>0.05</td>
<td>-56%</td>
<td>10</td>
</tr>
<tr>
<td>N2</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.09</td>
<td>0.05</td>
<td>-45%</td>
<td>13</td>
</tr>
<tr>
<td>N20</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.03</td>
<td>0.05</td>
<td>-9%</td>
<td>6</td>
</tr>
<tr>
<td>N21</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.03</td>
<td>0.05</td>
<td>-9%</td>
<td>5</td>
</tr>
<tr>
<td>N4</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.03</td>
<td>0.05</td>
<td>-9%</td>
<td>4</td>
</tr>
<tr>
<td>N6</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.02</td>
<td>0.05</td>
<td>-9%</td>
<td>2</td>
</tr>
<tr>
<td>N9</td>
<td>5/7/1998 - 9/8/2005</td>
<td>23</td>
<td>0.02</td>
<td>0.05</td>
<td>-9%</td>
<td>2</td>
</tr>
<tr>
<td>O10</td>
<td>5/19/1998 - 9/20/2005</td>
<td>26</td>
<td>0.01</td>
<td>0.05</td>
<td>-9%</td>
<td>1</td>
</tr>
<tr>
<td>O11</td>
<td>5/19/1998 - 9/20/2005</td>
<td>25</td>
<td>0.02</td>
<td>0.05</td>
<td>-9%</td>
<td>1</td>
</tr>
<tr>
<td>O13</td>
<td>6/2/2003 - 9/20/2005</td>
<td>10</td>
<td>0.07</td>
<td>0.05</td>
<td>-26%</td>
<td>2</td>
</tr>
<tr>
<td>O6</td>
<td>5/19/1998 - 9/20/2005</td>
<td>23</td>
<td>0.03</td>
<td>0.05</td>
<td>-9%</td>
<td>2</td>
</tr>
<tr>
<td>O8</td>
<td>5/19/1998 - 9/20/2005</td>
<td>23</td>
<td>0.04</td>
<td>0.05</td>
<td>-9%</td>
<td>7</td>
</tr>
<tr>
<td>O9</td>
<td>5/19/1998 - 9/20/2005</td>
<td>25</td>
<td>0.01</td>
<td>0.05</td>
<td>-9%</td>
<td>2</td>
</tr>
</tbody>
</table>

Load Reduction Goals by Catchment

Given no flow data are available, the STEPL model has been used to estimate current and target phosphorus loads in the subwatershed, as well as the estimated percent load reduction necessary to meet the target value. Table 5-9 presents the estimated loads and load reductions generated through STEPL.

Table 5-9. Estimated existing annual TP loads and associated reductions by catchment.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Existing Load (t/yr)</th>
<th>Target Load (t/yr)</th>
<th>Load Reduction (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>1.18</td>
<td>0.14</td>
<td>-88</td>
</tr>
<tr>
<td>Lake North</td>
<td>4.46</td>
<td>0.59</td>
<td>-87</td>
</tr>
<tr>
<td>Lake South</td>
<td>2.70</td>
<td>0.22</td>
<td>-92</td>
</tr>
</tbody>
</table>

It is important to keep in mind that the STEPL model does not estimate pollutant loads from streambank erosion or account for upstream pollutant load contributions (Tetra Tech 2004); therefore, the estimated TP loads are likely to be less than the actual TP load from each catchment – particularly those experiencing streambank erosion as documented in Chapter 3.
The total estimated phosphorus load for each catchment and the applicable percent load reduction provide the total estimated load reduction for each catchment. Given that the STEPL model does not account for streambank erosion, and there is a strong connection between sediment and phosphorus, an additional load that estimates the amount of phosphorus associated with streambank erosion is added on to the estimated load. The additional phosphorus load associated with streambank erosion is estimated by using the 10% additional sediment load estimated to account for streambank erosion and multiplying that number by a factor of 0.0005. MDEQ uses this factor when estimating the amount of sediment associated with a ton of sediment erosion. The additional 10 percent is an arbitrary number and may be higher or lower than the amount contributed by actual streambank erosion. This percentage will be updated if and when better data on contributions from streambank erosion become available. Table 5-10 presents the estimated total phosphorus load from each catchment, including the additional 10 percent of the original estimated load to account for streambank erosion. Table 5-11 presents the final estimated load reduction by catchment.

Table 5-10. Estimated annual TP load and additional load to account for streambank erosion by catchment.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Estimated Phosphorus Load (ton/year)</th>
<th>Additional Load to Account for Streambank Erosion (0.0005 * 10% additional load for sediment)</th>
<th>Total Estimated Phosphorus Load (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>1.18</td>
<td>0</td>
<td>1.18</td>
</tr>
<tr>
<td>Lake North</td>
<td>4.46</td>
<td>0.03 (0.0005 * 60)</td>
<td>4.49</td>
</tr>
<tr>
<td>Lake South</td>
<td>2.70</td>
<td>0.01 (0.0005 * 24)</td>
<td>2.71</td>
</tr>
</tbody>
</table>

Table 5-11. Final estimated phosphorus load reduction needed by catchment.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Estimated Phosphorus Load Reduction Needed (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>1.0 88% reduction from total estimated phosphorus load of 1.18 tons/year</td>
</tr>
<tr>
<td>Lake North</td>
<td>3.8 87% reduction from total estimated phosphorus load of 4.76 tons/year</td>
</tr>
<tr>
<td>Lake South</td>
<td>2.5 92% reduction from total estimated phosphorus load of 2.71 tons/year</td>
</tr>
</tbody>
</table>
Critical Areas

Critical areas are the geographic portions of a watershed that contribute the greatest amount of a pollutant and have the most significant impact on the watershed. Identifying critical areas is an important step when determining how to achieve the phosphorus load reductions necessary to meet the TP target value. The most significant sources of phosphorus loading in the subwatershed are stormwater runoff from urban land uses (e.g., commercial, industrial, institutional, transportation, multi-family dwellings, vacant developed land, and open space). Figure 5-3 presents a comparison of the relative contributions of phosphorus loading from different sources by catchment.

Figure 5-3. Estimated phosphorus load by source and catchment.

Although the STEPL model results provide only an estimate, the information is helpful in understanding the relative contributions of phosphorus loading from sources within each catchment of the subwatershed and how to prioritize these sources when selecting management practices to achieve load reductions.

Defining critical areas for sediment in the subwatershed requires consideration of the results from the STEPL model. These results represent estimated data for catchment loads and relative load contributions from sources within each catchment. Based on the estimated existing and target TP loads, and estimated source contributions of the phosphorus load, the critical areas to address in the subwatershed include those described below.

1  Residential Lawns in All Three Catchments

All three catchments have to achieve significant phosphorus reductions to reach the TP target value. For the Grosse Pointe and Lake North catchments, the most significant source of phosphorus is from single family residential areas. The Lake South catchment has a significant amount of phosphorus loading from single family residential, as well,
although CSO/SSO contributions are slightly higher (.41 tons/year) in this catchment. Addressing phosphorus load contributions from managed turf, including fertilizers and organic yard waste, will help all three catchments achieve their phosphorus load reductions.

2 Combined Sewer Areas in Lake South
The most significant source of phosphorus in the Lake South catchment is from overflows. MDEQ data show that of the 76 CSO discharge events to Lake St. Clair (2000-2006), 73 originated from this catchment. Of the 16 recorded SSO events in the subwatershed during 2000-2003, six occurred in this catchment. The CSOs that occurred between 2003 and 2005, the timeframe for the data used in the STEPL model to determine phosphorus load contributions from CSOs and SSOs, discharged an average of 220 million gallons of partially treated sewage to Lake St. Clair per year. The six SSOs that occurred most recently in 2003 at the Martin RTF contributed an average of 40 million gallons of untreated sewage. Stormwater management encourages infiltration and runoff retention; therefore, effective stormwater management in Lake South will help to reduce the quantity of stormwater runoff infiltrating the sanitary sewer system and entering the combined sewer system, ensuring that the systems do not exceed their design capacity.

Monitoring Progress
Monitoring the reductions in the phosphorus load requires continued monitoring of total phosphorus, as well as other indicators of phosphorus (e.g., water clarity, dissolved oxygen). The Macomb County Health Department conducts ongoing monitoring through its Surface Water Sampling Program, which includes TP monitoring. The Clinton River Watershed Council’s Stream Leaders student water quality monitoring program monitors for phosphates.

Monitoring is recommended to include total phosphorus to establish trends that build off of the existing dataset that serves as baseline data. In addition to monitoring for purposes of trend analysis, monitoring plans should also measure management practice effectiveness to determine if management practice implementation is successfully reducing phosphorus loading from sources in the subwatershed.

Future monitoring may include flow monitoring in the subwatershed to help establish more accurate load estimates.

The specific monitoring protocols to be implemented in support of this plan are presented in Chapter 9.

Improvement Ideas
In all three catchments, efforts to reduce phosphorus fertilizers and properly dispose of yard waste resulting from residential lawn care practices are important. Public education and outreach is a good place to start in targeting homeowners who conduct their own lawn maintenance activities and landscapers that work in the subwatershed. A focus group of local landscapers working in the subwatershed was conducted in September 2005 and provides useful insights on how to communicate and educate landscaping companies. In addition to public education and outreach, phosphorus loading from residential areas can be reduced through the use of ordinances. For example, a ban on the use of phosphorus fertilizer for residential lawn care could help to reduce
loadings to Lake St. Clair. Education techniques alone are not as likely to be effective without some other type of incentive (or disincentive) to motivate a behavior change.

In the Lake South and Grosse Pointe catchments, particularly in areas serviced by combined sewers, good housekeeping practices such as catch basin cleaning and sewer system maintenance and planning will help to reduce phosphorus loads associated with overflows. In addition, management practices that promote infiltration while reducing the direct connection of impervious areas to the storm sewer drainage system will decrease phosphorus loads. These types of management practices include porous pavement, green roofs, bioinfiltration, retention, detention and other low impact development techniques. In addition, the use of swirl separators or sediment traps is another alternative.

Improvement techniques mentioned in the previous section to address sediment loadings will also have a positive effect on reducing phosphorus loadings. The road stream crossing survey, focused on the Lake North and Lake South catchments, revealed a lack of 100-foot buffer on each side of waterbodies. The unified stream assessment in the subwatershed focused on sites located in the Lake North catchment near the Cottrell Drain; findings indicated that one stream crossing has significant sediment deposition and is recommended for restoration by sediment removal. One assessment site on the Roseville-Clinton Drain (RCRB-04) was determined to have poor streambank conditions. Stabilizing exposed soil adjacent to the streambanks and eroding streambanks may typically be accomplished with a vegetative approach (bioengineering). Identifying opportunities to create a 100-foot buffer on each side of waterbodies would also help to create a natural filter for stormwater runoff and potentially reduce phosphorus loads associated with sediment.

Chapter 8 presents the specific actions to be taken towards achieving loading reductions for sediment, as well as other significant stressors.

Pathogens

Pathogens are disease-causing microorganisms. They can be readily transported in stormwater runoff to streams and rivers. Three general categories of pathogens include bacteria, protozoans, and viruses. When found in water at elevated levels, pathogens can pose a serious health concern, potentially affecting water-based recreation and drinking water supplies. Illnesses associated with pathogens range from vomiting to death in sensitive populations. Risks to human health may vary depending on factors that influence the survival and reproduction of water-borne pathogens. Factors include temperature, sunlight, moisture, soil conditions, and settling in sediment (EPA, 2001).

Sources

Given the size and variability of pathogens, it is difficult to identify their sources and track their movement. Pathogens can enter watersheds from both point and nonpoint sources. Wastewater treatment plants and combined sewer overflows are often the most significant point sources of pathogens, depending on the type of treatment technology employed. Nonpoint sources of pathogens in urban areas include failing sewer lines, pet waste, wildlife, and urban litter (EPA, 2001). Pathogens can settle in
bottom sediment and are prone to resuspension during storm events or from recreational activity. Table 5-12 identifies some general sources and causes of pathogens based on anthropogenic influences.

The likely sources of pathogens in the subwatershed include stormwater runoff from urban areas, combined and sanitary sewer overflows, illegal dumping and illicit connections into the storm sewer system, animal waste from both wildlife and pets, and improperly managed sanitary waste from boating activities at marinas. Chapter 2 discusses instances of CSOs and SSOs in the subwatershed. According to MDEQ data, a total of 76 CSO discharge events and 16 SSO events have occurred in the subwatershed from 2000-2006. SSOs contribute untreated sanitary waste to the subwatershed and CSOs contribute partially treated sanitary waste to the subwatershed.

Table 5-12. General sources of pathogens.

<table>
<thead>
<tr>
<th>Sources</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illicit Connections</td>
<td>Poor Construction Practices</td>
</tr>
<tr>
<td></td>
<td>Function of Design Criteria</td>
</tr>
<tr>
<td></td>
<td>Unnecessary Inflow (e.g. connected downspouts and footing drains)</td>
</tr>
<tr>
<td></td>
<td>Increased Development with Poor Stormwater Planning</td>
</tr>
<tr>
<td>Animal Waste (Non-Agricultural)</td>
<td>Pet Owners Not Picking Up Waste</td>
</tr>
<tr>
<td></td>
<td>Wildlife</td>
</tr>
<tr>
<td></td>
<td>Lack of Buffer</td>
</tr>
<tr>
<td>Failed Septic Systems</td>
<td>Poor Design</td>
</tr>
<tr>
<td></td>
<td>Poor Construction</td>
</tr>
<tr>
<td></td>
<td>Poor Maintenance</td>
</tr>
<tr>
<td>Leaky Sanitary Sewer</td>
<td>Poor Design</td>
</tr>
<tr>
<td></td>
<td>Poor Construction</td>
</tr>
<tr>
<td></td>
<td>Poor Maintenance</td>
</tr>
<tr>
<td>Sanitary Sewer Overflows (SSOs)</td>
<td>Excessive Infiltration</td>
</tr>
<tr>
<td></td>
<td>Stormwater Inflow</td>
</tr>
<tr>
<td></td>
<td>Increased Development with Poor Stormwater Planning</td>
</tr>
<tr>
<td></td>
<td>Inadequate storm drainage</td>
</tr>
<tr>
<td>Combined Sewer Overflows (CSOs)</td>
<td>Limited Transport and/or Treatment Capacity</td>
</tr>
<tr>
<td></td>
<td>Increased Stormwater Runoff from Impervious Surfaces</td>
</tr>
<tr>
<td></td>
<td>Increased Development</td>
</tr>
<tr>
<td>Dumping</td>
<td>Lack of Adequate Disposal Facilities</td>
</tr>
<tr>
<td></td>
<td>Poor Enforcement</td>
</tr>
</tbody>
</table>

**Impact and Impairment**

The presence of pathogens in water has the potential to negatively affect public health and can impair recreational and drinking water uses. Primary and secondary contact with recreational water contaminated by pathogens presents an elevated risk for gastrointestinal, respiratory, eye, ear, nose, throat, and skin diseases. Information obtained from the Macomb County Health Department Website indicates that the St. Clair Shores Memorial Beach and the St. Clair Shores Blossom Heath Beach were closed numerous times due to excessive *E. coli* levels in recent years.

**Indicators**

Directly measuring pathogens in water presents a variety of challenges. As a result, bacteria associated with pathogens are measured as an indicator of the presence of pathogens. Fecal indicators, such as total coliform, fecal coliform, and *Escherichia coli* (*E. coli*), are commonly used indicator organisms. Although there is scientific support for the use of *E.
coli and other fecal indicators in determining the presence of pathogens, concerns exist about the correlation between the indicator, the presence of pathogens, and the incidence of disease (EPA, 2001). However, despite these concerns, E. coli is one of the most frequently used and publicly recognized indicators for pathogens, particularly for purposes of beach health reporting.

**Water Quality Standards**

Water quality standards in Michigan contain numeric criteria for E. coli to protect total body contact recreation and partial body contact recreation designated uses. To protect total body contact recreation, in-stream water quality is not to exceed 300 E. coli per 100 milliliters. For partial body contact recreation, in-stream water quality is not to exceed a maximum of 1000 E. coli per 100 milliliters.

The component of the standard that applies to total body contact recreation (maximum of 300 counts/100 mL) was used to determine the extent of water quality exceedances in the subwatershed and identify critical areas.

**Comparison of Current Concentration Data to the Water Quality Standard**

The water quality standard for total body contact recreation presented above serves as the numeric goal for E. coli, a pathogen indicator organism. Rather than looking at E. coli loads from sources in the subwatershed, this section presents an analysis of the existing E. coli concentration data and directly compares these data to the water quality standard to indicate where a critical area might exist. Previous load reduction analysis conducted for the planning process indicates that significant load reductions throughout the subwatershed are necessary to achieve the water quality standard. Using a concentration-based approach is consistent both with the Macomb County Health Department’s beach health reporting approach and the Michigan Department of Environmental Quality’s approach for developing the pathogen Total Maximum Daily Load (TMDL) for the nearby Red Run subwatershed. The nature of pathogens and E. coli as an indicator organism make it significantly challenging to estimate relative source contributions without the use of sophisticated and resource-intensive techniques (e.g., E. coli source tracking using DNA fingerprinting). It is appropriate to assume that all known and suspected sources of pathogens require significant attention to reduce pathogen loads to the subwatershed.

Table 5-13 presents the available E. coli data used to determine recent concentrations. These data are generated through Macomb County Health Department surface water quality monitoring program and reported in the annual Lake St. Clair Water Quality Assessment reports.

The geometric mean provides information on the average number of E. coli counts per 100 milliliters; counts above 300 indicate exceedances of the pathogen water quality standard. The percent reduction indicates how far the average concentration must drop to meet water quality standards – this is not a percent reduction in pathogen loads from sources. The number of samples exceeding the water quality standard out of the total number of samples (i.e., count) provides a percentage of samples that exceed the water quality standard.
Table 5-13. *E. coli* data used to estimate current and target loads.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Period of Record</th>
<th>Count</th>
<th>Geometric Mean (#/100mL)</th>
<th>Reduction</th>
<th># of Samples Exceeding 300 counts/mL</th>
<th>% of Samples Exceeding 300 counts/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N10</td>
<td>4/30/1998 - 9/15/2005</td>
<td>145</td>
<td>4</td>
<td></td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>N11</td>
<td>4/30/1998 - 9/15/2005</td>
<td>147</td>
<td>5</td>
<td></td>
<td>7</td>
<td>5%</td>
</tr>
<tr>
<td>N12</td>
<td>4/30/1998 - 9/15/2005</td>
<td>148</td>
<td>7</td>
<td></td>
<td>6</td>
<td>4%</td>
</tr>
<tr>
<td>N13</td>
<td>4/30/1998 - 9/15/2005</td>
<td>145</td>
<td>7</td>
<td></td>
<td>6</td>
<td>4%</td>
</tr>
<tr>
<td>N14</td>
<td>4/30/1998 - 9/15/2005</td>
<td>145</td>
<td>6</td>
<td></td>
<td>5</td>
<td>3%</td>
</tr>
<tr>
<td>N15</td>
<td>4/30/1998 - 9/15/2005</td>
<td>153</td>
<td>5</td>
<td></td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>N16</td>
<td>4/30/1998 - 8/25/2005</td>
<td>144</td>
<td>5</td>
<td></td>
<td>4</td>
<td>3%</td>
</tr>
<tr>
<td>N17</td>
<td>4/30/1998 - 9/15/2005</td>
<td>145</td>
<td>5</td>
<td></td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>N18</td>
<td>4/30/1998 - 9/8/2005</td>
<td>145</td>
<td>5</td>
<td></td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>N9</td>
<td>4/30/1998 - 9/15/2005</td>
<td>144</td>
<td>5</td>
<td></td>
<td>8</td>
<td>6%</td>
</tr>
<tr>
<td>O13</td>
<td>6/2/2003 - 9/15/2005</td>
<td>11</td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O8</td>
<td>4/22/1998 - 9/20/2005</td>
<td>40</td>
<td>8</td>
<td></td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>O9</td>
<td>4/22/1998 - 7/20/2005</td>
<td>25</td>
<td>3</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N2</td>
<td>4/30/1998 - 9/15/2005</td>
<td>150</td>
<td>36</td>
<td></td>
<td>6</td>
<td>4%</td>
</tr>
<tr>
<td>N4</td>
<td>4/30/1998 - 9/15/2005</td>
<td>169</td>
<td>16</td>
<td></td>
<td>6</td>
<td>4%</td>
</tr>
<tr>
<td>N6</td>
<td>4/30/1998 - 9/15/2005</td>
<td>169</td>
<td>9</td>
<td></td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>O10</td>
<td>4/22/1998 - 7/20/2005</td>
<td>24</td>
<td>3</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O11</td>
<td>4/22/1998 - 7/20/2005</td>
<td>39</td>
<td>3</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Critical Areas

For other stressors, critical areas are defined as the geographic portions of a watershed that contribute the greatest amount of a pollutant and have the most significant impact on the watershed. For *E. coli*, the analysis focuses on concentration data rather than loading data. Therefore, it is difficult to estimate the geographic portions of the watershed that contribute the greatest amount of pathogens. Concentration data can provide an understanding of what portions of the subwatershed have relatively higher or lower levels of pathogens; this provides an indication of which catchments might contribute a relatively greater pathogen load. Recommended critical areas for *E. coli* include those catchments that contribute stormwater runoff to combined sewer and sanitary sewer systems experiencing frequent overflows. A discussion of these critical areas is presented below.

1 Combined Sewer Areas in Lake South and Grosse Pointe

The most significant source of *E. coli* in the Lake South catchment is from overflows. MDEQ data show that of the 76 CSOs discharging to Lake St. Clair (2000-2006), 73 originated from this catchment. Of the 16 recorded SSOs in the subwatershed during 2000-2003, six occurred in this catchment. The CSOs that occurred between 2003 and 2005, the timeframe for the data used in the STEPL model to determine sediment load contributions from CSOs and SSOs, discharged an average of 220 million gallons of partially treated sewage to Lake St. Clair per year. The six SSOs
that occurred most recently in 2003 at the Martin RTF contributed an average of 40 million gallons of untreated sewage. Stormwater management encourages infiltration and runoff retention; therefore, effective stormwater management in Lake South and Grosse Pointe catchments will help to reduce the quantity of stormwater runoff infiltrating the sanitary sewer system and entering the combined sewer system, ensuring that the systems do not exceed their design capacity.

2 Areas with High Potential for Illicit Discharges
Findings from the Road-Stream Crossing Survey revealed that illicit discharges are potential problems at all sites on the Milk River and Cottrell Drain, and as potential problems on half of the sites on the Roseville-Clinton Drain. Information from Illicit Discharge Elimination Program (IDEP) activities conducted by Macomb County and communities in the subwatershed will also provide information on potential cross-connections of the storm sewer system with the sanitary sewer system lines. According to Macomb County’s NPDES Phase 2 Watershed Permit Annual Report, the county completed surveys of the subwatershed in fall of 2004, in addition to surveys of outfalls in other subwatersheds. Through the IDEP activities, Macomb County identified 220 of 2,236 outfalls requiring further investigation. Of the outfalls surveyed, 8 percent yielded \textit{E. coli} samples greater than the target value. Communities conducting similar IDEP activities can use information from specific outfalls to conduct follow-up investigations and determine the source of the pathogens.

3 Areas that Attract Wildlife and Pets
Wildlife and pets are significant potential sources of pathogens within urban watersheds. Although there are no documented data to determine the relative contributions from wildlife and pets, it is likely that these contributions are significant and require management strategies. The hotspot investigation conducted in the subwatershed revealed 20 percent of assessed locations had dumpsters unprotected from rainfall or in damaged condition. Twenty percent (20%) also had dumpsters that were located near a storm drain inlet. Leaky dumpsters or trash around them has the potential to not only contaminate runoff, but also attract rodents and other scavenging wildlife. Areas in the subwatershed that allow pets, including residential yards, are also potential sources of pathogens if pet owners do not properly manage pet waste.

Monitoring Progress
Monitoring the progress of reducing pathogens will rely on existing \textit{E. coli} monitoring efforts by the Macomb County Health Department. The Macomb County Health Department monitors for \textit{E. coli} on a regular basis through the Macomb County Bathing Beach and Surface Water Quality Program. In addition, the Department conducts initial investigations of stormwater outfalls through the Illicit Discharge Elimination Program, which includes sampling for \textit{E. coli}. Communities within the subwatershed also conduct IDEP activities and generate data on levels of \textit{E. coli} found in flow from stormwater outfalls.

Another indicator of pathogens, fecal coliform bacteria, is monitored through the Clinton River Watershed Council’s Stream Leaders student water quality monitoring program.
Continued *E. coli* monitoring will establish trends that build off of the existing dataset that serves as baseline data. In addition to monitoring for purposes of trend analysis, monitoring should also measure management practice effectiveness to determine if management practice implementation is successfully reducing *E. coli* loads from sources in the subwatershed. The issue of pathogen source identification is an important and challenging topic; as progress is made in this arena, it would be beneficial to incorporate source identification monitoring to help distinguish the sources of *E. coli* in the subwatershed.

Given the challenges associated with using *E. coli* as an indicator organism for pathogens, future monitoring needs include identifying an alternative indicator for pathogens. Future monitoring needs for *E. coli* also include the identification and use of acceptable source tracking techniques to aid in distinguishing anthropogenic sources of pathogens from wildlife and other natural sources.

The specific monitoring protocols to be implemented in support of this plan are presented in Chapter 9.

**Improvement Ideas**

Improving stormwater infiltration and on-site retention will help to alleviate the stress placed on separate and combined sanitary sewers that might have illicit connections to the storm sewer system or inflow/infiltration problems due to age or lack of adequate maintenance. Promoting small-scale on-site stormwater management techniques that promote infiltration while reducing the direct connection of impervious areas to the storm sewer drainage system will decrease *E. coli* loads. These types of management practices include porous pavement, green roofs, bioinfiltration, retention, detention and other low impact development techniques.

Efforts to properly manage domestic pet waste and limit the populations of anthropogenic wildlife, such as geese, pigeons, raccoons, and rats, are likely to help reduce *E. coli* loads associated with urban runoff. Techniques such as public education campaigns focused on pet owners, along with local ordinances to promote proper pet waste management, could alleviate pathogen loadings associated with domestic pets. Residential and commercial areas that have the potential to attract wildlife should employ good housekeeping practices to prevent congregation of these animals. Also, the use of riparian buffers along open waterways can reduce the number of geese attracted to these areas.

Marina pollution prevention activities that include an educational component can help to inform boaters on the proper way to manage sanitary and other waste from their vessels and the potential impacts to Lake St. Clair if they illegally dump.

Improving current IDEP programs can be researched. If enhanced methodologies are appropriate, they may be implemented.

The specific actions to be taken towards achieving loading reductions for sediment are presented in Chapter 8.
Critical Area Summary

Based on the critical area analyses presented in the previous sections, there is little overlap between the critical areas for the three main stressors.

Other Stressors

Aside from the stressors discussed above in detail, other known stressors are present in the watershed. For each of these stressors, the sources and causes are identified.

Contaminated Sediments

Chemicals such as PCBs, metals (e.g., mercury, lead, zinc), and pesticides tend to bind to particles and collect in bottom sediments. Elevated concentrations of these chemicals have been documented over several decades in a number of locations along the Clinton River from Pontiac to the mouths of both the river and the spillway (EPA, 2003). According to studies conducted during the last decade, the subwatershed contains some of the most contaminated areas within the Clinton River AOC (ECT, 2005). Table 5-14 presents the potential sources and causes of contaminated sediments in the subwatershed. The sources of these contaminants include historical point source discharges, as well as existing nonpoint sources. Contaminated sites, such as landfills and leaking underground storage tanks, might also contribute pollutants contaminating sediments. More work is necessary to understand the sources and causes of contaminated sediments, including the mixing and transport of sediments. When present at elevated levels in sediments, chemicals can kill or harm bottom-dwelling organisms and can also accumulate in aquatic organisms and move up the food chain to fish, shellfish and eventually humans. Contaminated sediments have also resulted in a restriction to dredging activities because of the concern for re-suspending chemicals currently buried.

Table 5-14. Contaminated sediments - sources and causes.

<table>
<thead>
<tr>
<th>Sources</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resuspension of buried contaminated sediments</td>
<td>Disturbance from storm events</td>
</tr>
<tr>
<td></td>
<td>Disturbance from recreational and navigational activities</td>
</tr>
<tr>
<td>Contaminated sites (landfills and underground storage tanks)</td>
<td>Age of materials</td>
</tr>
<tr>
<td></td>
<td>Lack of maintenance and monitoring</td>
</tr>
<tr>
<td>Stormwater runoff</td>
<td>Automotive fluids and by-products on impervious surfaces</td>
</tr>
<tr>
<td></td>
<td>Improper disposal of hazardous materials</td>
</tr>
<tr>
<td></td>
<td>Improper materials storage and good housekeeping practices</td>
</tr>
</tbody>
</table>

Polychlorinated Biphenyls

Polychlorinated Biphenyls (PCBs) were commonly used in industrial and commercial equipment including heat transfer systems and televisions as well as in paints, plastic and rubber products, pigments, dyes and carbonless copy paper until PCBs were banned in 1976. Table 5-15 lists Lange/Revere Canal and 10 Mile Drain are noted for having elevated levels of PCBs. According to the EPA, PCBs are known to cause cancer in animals, cause problems in human immune, reproductive, nervous and endocrine systems and affect intellectual development of children and adults (EPA, 2006).
### Table 5-15. PCBs - Sources and Causes

<table>
<thead>
<tr>
<th>Sources</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Bottom Sediment</td>
<td>Plant Discharges</td>
</tr>
<tr>
<td></td>
<td>Lack of Convenient Disposal Facilities</td>
</tr>
<tr>
<td></td>
<td>Permitted Usage</td>
</tr>
<tr>
<td>Brownfield Runoff and Subsurface Leaching</td>
<td>Plant Discharges</td>
</tr>
<tr>
<td></td>
<td>Lack of Convenient Disposal Facilities</td>
</tr>
<tr>
<td></td>
<td>Permitted Usage</td>
</tr>
</tbody>
</table>

### Habitat Alteration

Habitat alteration is affecting the fisheries, other aquatic life, and wildlife. Habitat loss has resulted from the urbanization of the watershed and the conversion of the natural land cover to parking lots, buildings, homes, and lawns. In addition to the direct loss of stream habitat, the increased imperviousness has also resulted in a significant modification to the natural flow regime. High quality stream habitats with intact riparian zones and natural channel morphology are essential to a healthy aquatic community because they provide shelter, spawning areas, and can help filter excess pollutants such as nutrients and sediment.

### References


6. Goals and Objectives

Introduction

As noted in Chapter 1, the main purpose of this plan is:

“To improve and protect the ecological, hydrological, and cultural resources of the Lake St. Clair Direct Drainage Subwatershed.”

The long-term goals and short-term objectives defined in this section reflect this purpose. They also reflect:

- The natural and human environments of the subwatershed;
- The current conditions in the subwatershed;
- The desires and concerns of subwatershed stakeholders and the general public;
- The analysis of stressors in the subwatershed;
- The requirements of National Pollutant Discharge Elimination System (NPDES) General Permit No. MIG619000 (‘Watershed-based Permit’) and other programs for which the plan is compliant; and,

The goals and objectives are important as they will drive future decisions with respect to appropriate management strategies and evaluation of progress toward improving the health of the subwatershed.

Goals and Objectives

The details of each goal, including objectives are presented in this section. The order of the goals and objectives does not reflect their importance.

Goal I: Protect water quality and reduce pollution

The aim of Goal I is to directly address known water quality issues and protect designated uses including “Industrial Water Supply” and “Public Water Supply” (“Agricultural Water Supply” is a designated use but is not found in the subwatershed). This goal is also intended to support actions for compliance with any Total Maximum Daily Loads (TMDLs) established within the subwatershed. The objectives include:

<table>
<thead>
<tr>
<th>Goal I – Objectives</th>
</tr>
</thead>
</table>
| A. Address existing and future contaminated sediments. | i. Identify feasible actions to remediate existing contaminated sediments.  
| | ii. Identify and implement pollution prevention activities for current and future sources.  
| B. Reduce the amount of phosphorus and excessive algae. | i. Identify sources of phosphorus.  
| | ii. Identify and implement management practices to limit phosphorus loadings.  
| C. Reduce the amount of sediment. | i. Identify sources of sediment.  
| | ii. Identify and implement management practices to limit sediment loadings.  
| D. Reduce amount of pathogens. | i. Identify and address failing septic systems.  
| | ii. Identify and address illicit connections.  
| | iii. Identify stormwater management techniques to reduce other nonpoint source pathogen loadings and implement techniques where practical.  

Quotable Quotation

“Our goals can only be reached through a vehicle of a plan, in which we must fervently believe, and upon which we must vigorously act. There is no other route to success.”

--Stephen A. Brennan

Applicability of Goals and Objectives

As noted in Chapter 1, the goals and objectives in this plan apply only to the land comprising the LSCW, which is just a small percentage of the total area that drains to Lake St. Clair. However, these goals and objectives are consistent with the public’s aspirations and the Lake St. Clair Comprehensive Management Plan.

Illicit Discharge Elimination Plans

Permittees are striving to eliminate pathogens discharging to waterbodies through their Illicit Discharge Elimination Plans (IDEP). These plans describe activities undertaken to ensure that no illegal pollution sources, such as cross-connected sanitary sewers, are discharging from storm sewer outfalls. Development and implementation of an IDEP is a separate requirement of the Watershed-based Permit.
Goal II: Provide and promote public education to raise awareness and change behavior

The aim of Goal II is to develop an aggressive multi-media public education and participation campaign to define watersheds and stormwater, foster a watershed stewardship ethic, and advertise watershed events targeted at the general public, stakeholders, municipal officials and planning boards. The objective language is presented below:

<table>
<thead>
<tr>
<th>Goal II – Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Increase the public’s level of awareness about watershed problems and management activities.</td>
</tr>
<tr>
<td>i. Develop and utilize existing outreach materials using messages and formats tailored to specific target audiences.</td>
</tr>
<tr>
<td>ii. Provide hands-on, interactive learning opportunities focused on watershed concepts tailored to specific target audiences.</td>
</tr>
<tr>
<td>B. Increase the public’s understanding of steps to take to improve water quality.</td>
</tr>
<tr>
<td>i. Ensure existing outreach materials focused on positive actions to improve water quality reach key target audiences.</td>
</tr>
<tr>
<td>ii. Provide hands-on learning opportunities for key target audiences that address specific behaviors and pollutants of concern.</td>
</tr>
<tr>
<td>C. Produce measurable changes in the public’s behaviors that negatively impact water quality.</td>
</tr>
<tr>
<td>i. Develop and utilize existing social marketing programs that target specific polluting behaviors in specific target audiences.</td>
</tr>
<tr>
<td>ii. Conducting evaluations of outreach and social marketing activities to assess effectiveness over time.</td>
</tr>
</tbody>
</table>

Goal III: Protect and enhance sustainable recreational opportunities

During the stakeholder workshops and community forums, many people indicated that they would like to see rivers restored, enhanced, and/or protected so that recreational activities can be enjoyed for the long-term. “Partial Body Contact Recreation”, “Total Body Contact Recreation between May 1 and October 31”, and “Navigation” are designated uses of surface waters that the MDEQ manages water resources to support. The communities would like to promote and enhance sustainable recreation in their watershed as much as practicable, but they recognize that this is a long-term goal that involves the implementation of this watershed management plan (WMP) as a whole.

The objectives for Goal III are:

<table>
<thead>
<tr>
<th>Goal III – Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Increase opportunities for water-based recreation.</td>
</tr>
<tr>
<td>i. Educate the public about the potential dangers and health risks associated with water-based recreational activities.</td>
</tr>
<tr>
<td>ii. Educate the public about inland parks and recreational lands near open drains to help make residents more aware of the potential effect they have on the lake.</td>
</tr>
<tr>
<td>iii. Increase recreational opportunities through additional programs / facilities and enhance public access to existing facilities.</td>
</tr>
<tr>
<td>iv. Ensure water is safe for partial and total body contact recreational activities.</td>
</tr>
</tbody>
</table>
Goal IV: Minimize local stakeholder impacts and restore and enhance fisheries, aquatic life, wildlife, and associated habitat

During the stakeholder workshops and community forums, many people expressed a desire to protect and enhance terrestrial and aquatic wildlife populations. “Warm Water Fisheries” and “Other Indigenous Aquatic Life and Wildlife” are designated uses of surface waters that the MDEQ manages water resources to support. The communities rely on the successful implementation of this WMP to protect these designated uses. The objectives are:

<table>
<thead>
<tr>
<th>Goal IV – Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Increase the amount of desired suitable habitat to support aquatic life, wildlife, and fisheries.</td>
</tr>
<tr>
<td>i. Identify high-quality habitat in need of protection</td>
</tr>
<tr>
<td>ii. Identify areas with habitat in need of restoration</td>
</tr>
</tbody>
</table>

Goal V: Reduce impact of runoff through effective stormwater management

Based on historical and recent water quality and biological data, the communities recognize the contribution that stormwater runoff plays in deteriorating water quality. To address stormwater runoff the communities have established the following objectives:

<table>
<thead>
<tr>
<th>Goal V – Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Reduce impacts from urban stormwater runoff.</td>
</tr>
<tr>
<td>i. Identify and implement best management practices to effectively manage quantity and quality of urban stormwater.</td>
</tr>
<tr>
<td>B. Reduce urban stormwater contributions leading to CSOs and SSOs.</td>
</tr>
<tr>
<td>i. Identify and implement best management practices to effectively manage quantity and quality of urban stormwater that will promote reduction of CSO and SSO frequency.</td>
</tr>
</tbody>
</table>

Goal VI: Seek out opportunities to sustain implementation of the plan

For any plan to be fully implemented and sustained for the long-term, a funding source must be identified and the plan institutionalized. The objectives supporting this goal are:

<table>
<thead>
<tr>
<th>Goal VI – Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Increase funding available for implementation.</td>
</tr>
<tr>
<td>i. Identify existing federal, state, and local funding opportunities.</td>
</tr>
<tr>
<td>ii. Coordinate the development of grant proposals.</td>
</tr>
<tr>
<td>iii. Identify private sector funding opportunities.</td>
</tr>
<tr>
<td>B. Institutionalize the plan and the advisory group.</td>
</tr>
<tr>
<td>i. Identify and adopt a mechanism for ensuring the advisory group continues its activities in the future.</td>
</tr>
<tr>
<td>ii. Identify and adopt a mechanism for ensuring the plan is implemented, updated, and revised in the future.</td>
</tr>
</tbody>
</table>

Combined and Sanitary Sewer Overflows

Minimization and/or management of sanitary sewer overflows (SSOs) and combined sewer overflows (CSOs) is a recognized problem and also a concern of the public. CSO and SSO control is not a part of this plan as these are addressed through other state permits and programs.

A Subwatershed Advisory Group Meeting: Continued Meetings and Action (Goal VI, Objective B) is a Key Making this Plan a Success
Decision-making Principles

While there were numerous factors in play when developing the goals and objectives, a few of the important principles are summarized:

- Addressing permit requirements;
- Addressing other funding requirements;
- Addressing known water quality issues;
- Addressing the desires of the public;
- Addressing public concerns; and
- Supporting the goals and objectives of related plans.

Neither the goals nor the objectives have been prioritized. As the goals and objectives will be met through a wide variety of actions, the prioritization has been couched in the action plan presented in Chapter 8.

Supported Plans

As noted in Chapter 1 and reiterated in the ‘Introduction’ section of this chapter, this plan has been developed to be consistent with and support the Clinton River RAP, the Lake St. Clair Comprehensive Management Plan, and the WQMP for Southeast Michigan. Table 6-1 details the relationship of the goals of this plan to the Beneficial Use Impairments (BUIs) in the RAP (as determined by the Subwatershed Advisory Group – SWAG). Table 6-2 details the relationship of the goals of this plan to the goals of the Lake St. Clair Comprehensive Management Plan (as determined by the SWAG). The goals of the WQMP are too numerous to list here, but there is consensus among SWAG members that this plan supports the major themes present throughout the WQMP goals: protecting water quality; controlling pollution; the need for watershed-based, sustainable resource decisions; and public participation and education.

Epilogue

This chapter defines the progress (in terms of goals and objectives) the SWAG would like to make towards improving their subwatershed. The information presented in the previous chapters has informed these choices through an adaptive management process (described in Chapter 1). If this process is continued throughout future planning efforts (e.g. plan updates), it is almost certain that the goals and objectives will change based on new data, completed actions, achievements, and other information.

The next chapter (7) lists a wide variety of the potential watershed protection tools, or actions, that can be implemented to realize the desired progress or, in other words, to achieve the goals and objectives.

Chapter 8 then presents the specific actions that have been chosen, indicates how these actions relate to achieving the goals and objectives, and defines the schedule for implementing the actions.

References


A Community Forum: Public Involvement and Education is a Tool that Can be Used to Address Many of the Goals and Objectives of this Plan

Photo courtesy of MCPWO.
Table 6-1. Relationship of WMP goals to RAP BUIs.

<table>
<thead>
<tr>
<th>WMP GOAL</th>
<th>Clinton River RAP Beneficial Use Impairments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Degraded Fish and Wildlife Populations</td>
</tr>
<tr>
<td>1. Protect water quality and reduce pollution.</td>
<td>I</td>
</tr>
<tr>
<td>2. Provide and promote public education to raise awareness and change behavior of subwatershed stakeholders.</td>
<td>I</td>
</tr>
<tr>
<td>3. Protect and enhance sustainable recreational opportunities.</td>
<td>I</td>
</tr>
<tr>
<td>4. Minimize local stakeholder impacts and restore and enhance fisheries, aquatic life, wildlife and associated habitat.</td>
<td>I</td>
</tr>
<tr>
<td>5. Reduce runoff through effective stormwater management.</td>
<td>I</td>
</tr>
<tr>
<td>6. Seek out opportunities to sustain implementation of the plan.</td>
<td>I</td>
</tr>
</tbody>
</table>

D = WMP goal directly supports elimination of BUI; I = WMP goal indirectly supports elimination of BUI

Subwatershed Photo Tour: The St. Clair Academy

![Photo courtesy of Tetra Tech.](image)
Table 6-2. Relationship of WMP goals to Lake St. Clair Comprehensive Management Plan goals.

<table>
<thead>
<tr>
<th>WMP GOAL</th>
<th>Lake St. Clair Comprehensive Management Plan Goals*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Protect water quality and reduce pollution.</td>
<td>I</td>
</tr>
<tr>
<td>2. Provide and promote public education to raise awareness and change behavior of subwatershed stakeholders.</td>
<td>I</td>
</tr>
<tr>
<td>3. Protect and enhance sustainable recreational opportunities.</td>
<td></td>
</tr>
<tr>
<td>4. Minimize local stakeholder impacts and restore and enhance fisheries, aquatic life, wildlife and associated habitat.</td>
<td>D</td>
</tr>
<tr>
<td>5. Reduce runoff through effective stormwater management.</td>
<td>I</td>
</tr>
<tr>
<td>6. Seek out opportunities to sustain implementation of the plan.</td>
<td></td>
</tr>
</tbody>
</table>

* - full text of goals listed below
1. Pollution does not threaten public health and the health of the watershed.
2. All biological communities and habitats are healthy, diverse, and self-sustaining.
3. Water is safe for drinking.
4. Water is safe for swimming.
5. Fish and wildlife are safe to consume.
6. Land use activities are sustainable and support a healthy watershed.
7. Recreations and economic activities impacting the lake are sustainable and support a healthy watershed.
8. Data and information are available to ensure informed management decisions.
9. All entities responsible for natural resources and environmental protection within the watershed are working together in a collaborative manner to protect and enhance the watershed.
10. The public is informed about environmental issues and engaged in activities to restore and protect the lake.

D = WMP goal directly supports Lake St. Clair Comprehensive Management Plan goal
I = WMP goal indirectly supports Lake St. Clair Comprehensive Management Plan goal
7. Watershed Protection

Introduction

Achieving the goals and objectives presented in Chapter 6 requires many different tools. Primary tools focus on the protection and restoration of aquatic resources and include:

- Watershed Planning, Institutionalization, and Implementation;
- Public Education and Participation;
- Ordinances, Zoning, and Development Standards;
- Good Housekeeping and Pollution Prevention; and

Additional tools necessary to meet the goals and objectives include:

- Natural Features and Resources Management; and
- Recreation Promotion and Enhancement.

Also, watershed protection requires monitoring of implementation and results to determine program effectiveness and guide changes to the plan. All of these aforementioned tools are discussed in the following sections.

Watershed Planning, Institutionalization, and Implementation

Watershed planning is a comprehensive tool that examines the characteristics of a watershed including its geology, hydrology, land use, development, demographics and water quality. This data is typically broken down into smaller subwatershed units for effective and efficient planning and actions. A watershed plan may include:

- Identification of problems, including a prediction of how water resources will react to future land use changes;
- Public input on desired uses within the watershed, including such topics as natural feature preservation and recreational opportunities enhancement;
- Goals and objectives, including meeting the designated and desired uses in the watershed;
- A plan to reduce or abate current and future problems;
- An action plan to select combinations of watershed protection tools for subwatersheds;
- Identification of the implementation and funding agents; and
- The framework for sustainable watershed management, including plan revision procedures (which rely on water quality monitoring).

Effectively implementing a plan requires a mechanism by which its actions are institutionalized and considered by all of the involved entities. This first tool, watershed planning, defines the actions which need to be institutionalized, including: public education and participation; ordinances, zoning, and development standards; good housekeeping and pollution prevention, and stormwater best management practices. Other actions to be defined during the planning process include those related to natural features and those targeting recreation.

The actions defined in a watershed management plan (WMP) need to be closely coordinated with other community programs. This ensures that changes to regulations and rules that impact watershed plan elements are supportive of the goals and objectives of the plan (SEMCOG, 2002).

Because watersheds are generally diverse in nature, and because the communities comprising the watershed have independent regulatory authority, these communities will determine which tools are appropriate.
for them (based on current water quality and land development levels) and apply them in ways consistent with their current regulatory structure.

**Clinton River Watershed Initiative**

The Clinton River Basin Watershed Initiative (CRBWI) is a two-year effort intended to integrate existing Clinton River watershed information and generate easy-to-use tools that will promote coordinated decision-making and action. The goal of the CRWI is to give watershed stakeholders access to the information they need to identify and implement solutions that will improve, restore, and protect the Clinton River watershed. The CRWI will also produce an updated Remedial and Preventative Action Plan (RAP) for the Clinton River Public Advisory Council. The CRB-WI website is [http://www.crwc.org/programs/watershedmgmt/crbwi/crbwi.html](http://www.crwc.org/programs/watershedmgmt/crbwi/crbwi.html).

**Public Education and Participation**

Watershed protection will be most effective when the public understands the environmental challenges and is invested in rectifying them. This understanding and investment ultimately comes through education and participation in meaningful activities. Many programs are available to consider when selecting a method to promote watershed stewardship. The main targets for education and participation include: businesses, municipal employees, and the general public. Some agencies and programs that can provide assistance in this area are discussed below.

**Agencies and Programs**

**Clinton River Watershed Council**

The Clinton River Watershed Council (CRWC) is a non-profit organization dedicated to protecting, enhancing and celebrating the Clinton River, its watershed and Lake St. Clair. The council was formed in 1972 as an association of local governments under the authority of the Michigan Local Rivers Management Act of 1964. For more than 30 years, CRWC has served to coordinate the efforts of local governments, businesses, community groups and individuals in improving water quality, promoting innovative watershed management techniques, and celebrating the river as a natural and recreational resource. The CRWC wrote and is implementing the Public Education Plans (PEPs) for most of the communities in the subwatershed. The council’s website can be found at [http://www.crwc.org/](http://www.crwc.org/).

**Southeast Michigan Council of Governments**

The Southeast Michigan Council of Governments (SEMCOG) is a regional planning agency in Southeast Michigan. SEMCOG plans in areas that cross jurisdictional boundaries in the Southeast Michigan region that encompasses Livingston, Macomb, Monroe, Oakland, St. Clair, Washtenaw, and Wayne counties. SEMCOG supports local government planning in the areas of transportation, environment, community and economic development, and education. The council’s website can be found at [http://www.semcog.org/](http://www.semcog.org/).

SEMCOG, partnering with other organizations through the ‘Southeast Michigan Partners for Clean Water’ program, conducts municipal training and heads up the ‘Our Water. Our Future. Ours to Protect’ campaign which includes: the ‘Seven Simple Steps to Clean Water’ materials, community involvement activities, and informational materials.

**Clinton River Basin Watershed Initiative**

Important products that will be developed through the CRBWI include:

- A Watershed Information Management System;
- A Clinton River Watershed Model; and
- A Site Evaluation Tool.

**Important CRWC Programs**

**Adopt-A-Stream**

A volunteer-based program that empowers community members to protect local streams and rivers by monitoring their health. Volunteers are teamed up, assigned sites, given equipment, data sheets and protocols, and sent out to gather information on streamside habitat and macroinvertebrate populations.

**Lake St. Clair Clean Boating Campaign**

The Lake St. Clair Clean Boating Campaign is a partnership between the Anchor Bay Yachting Association, the Marine Environmental Education Foundation, and the CRWC to educate boaters about clean boating practices to protect the Clinton River and Lake St. Clair. ‘Dockwalkers’ are trained in everyday clean boating practices and they then share what they’ve learned with fellow boaters.
Michigan Turfgrass Environmental Stewardship Program
The mission of the Michigan Turfgrass Environmental Stewardship Program is to advance the environmental stewardship of Michigan’s golf industry by increasing the awareness and understanding of environmental issues, ensure regulatory compliance, and recognize stewardship achievements. The program’s website is at http://www.mtesp.org/.

Michigan Audubon Society
The mission of Michigan Audubon Society and local chapters is to instill in people an interest, knowledge, and appreciation of birds and other wildlife. The Audubon Society promotes sound conservation methods by helping restore wildlife habitat, helping prevent pollution, preserving outstanding wildlife areas, and educating the public. The society’s website is http://www.michiganaudubon.org/.

Michigan Nature Centers
Nature Centers are either privately or locally funded entities that focus on research, recreation, and education. The State of Michigan has approximately 72 nature centers. The MDEQ lists the nature centers in the state, which can be found at http://www.michigan.gov/deq/ under “Key Topics” → “Environmental Education”.

The Groundwater Foundation
The Groundwater Foundation focuses on educating people and communities about the importance of groundwater and how to protect it. The foundation’s Groundwater Guardian program assists communities in organizing a team and developing result-oriented activities that focus on education, pollution prevention, public policy, conservation, and best management practices. More information about the Groundwater Foundation can be found at http://www.groundwater.org/.

Southeast Michigan Sustainable Business Forum
The Southeast Michigan Sustainable Business Forum (SMSBF) is a resource for the development and implementation of sustainable business practices. It will promote practices through awareness of global trends, identification of best environmental practices, education and mentoring. The forum’s website is available at http://www.smsbf.org/.

The Michigan Department of Environmental Quality
Information on the following programs can be obtained through the MDEQ’s website at http://www.michigan.gov/deq/:

- Environmental Education - This section hosts and links to a variety of simple and dynamic information about the environment; and
- Surface Water: Nonpoint Source Program (NSP) - The NSP offers grants and technical assistance and develops information and educational materials to help protect and improve Michigan’s water.

Michigan Environmental Council
The Michigan Environmental Council (MEC) provides a collective voice for the environment at the local, state and federal levels. Working with member groups and their collective membership of nearly 200,000 residents, MEC is addressing the primary assaults on Michigan’s environment; promoting alternatives to urban blight and suburban sprawl; advocating for a sustainable environment and economy; protecting Michigan’s water legacy; promoting cleaner energy; and working to diminish environmental impacts on children’s health. The MEC website is located at http://www.mecprotects.org/.

Public Education

Additional Considerations
Additional considerations include: disseminating materials with municipal services (e.g. recycling bins, building permits), utilizing the Retired Engineer Technical Assistance Program (RETAP), and providing multi-lingual materials to capture the broadest possible audience.
Specialized Programs: Youth Education

It is especially important to start educational activities when people are young so as to pave the way for watershed protection to become a societal value. Some sources of environmental curriculum schools are listed below. Additional programs are presented in the sidebar.

Clinton River Watershed Council – ‘Stream Leaders’ Program

The Stream Leaders program is intended to provide students with an educational experience in water quality monitoring, data interpretation, and citizen action, as well as provide general information to local officials concerning water quality. First, students and teachers get in the river and examine the chemical constituents of the river, inventory physical streamside conditions and land uses that may affect water quality, and sample the aquatic biological communities to evaluate the health of the river. Second, students and teachers analyze their data to locate any possible sources of pollution problems within the river. In the final part of the Stream Leaders, students and teachers identify and complete a civic action project such as collecting and cataloging river, lake and beach debris, restoring degraded habitats, or making community presentations.

Adopt-A-Watershed

Adopt-A-Watershed (AAW) is a non-profit organization that promotes educational enhancement, environmental stewardship, and community development through Place-Based Learning. AAW works with schools, youth education programs, community groups, and environmental organizations, guiding them through ‘The 5-Steps to Leadership in Place-Based Learning’. The 5-Step process develops leadership skills and strengthens organizational capacity to envision, create and successfully implement high quality Place-Based Learning. The 5-Step process is a proven model for educational, environmental and community transformation. The website is http://www.adopt-a-watershed.org/.

Center for Global Environmental Education

For over a decade, teachers, students, community leaders, and concerned citizens have come to Center for Global Environmental Education (CGEE) for inspired instruction and outstanding educational resources. CGEE’s pioneering work in environmental education is grounded in the tradition of progressive learning that has been a hallmark of Hamline University's Graduate School of Education. The Center’s strategic use of technology creates and supports global communities of learners committed to the stewardship of local environments. The center’s website can be accessed at: http://cgee.hamline.edu/about_cgee/index.html.

Environmental Protection Agency – Office of Wetlands, Oceans, and Watersheds

This Environmental Protection Agency (EPA) office provides activities, projects, information magazines, and curricula on wetlands, water resources, ecosystems, watersheds, wildlife, and more. Links to educational resources produced by other organizations are also provided. The office’s website can be found at http://www.epa.gov/owow/.

Other Youth Education Programs

Macomb County – offers three programs for teachers
The Center for Improved Engineering and Science Education
Freshwater Wetlands Teaching Guide
Envirospectives®
Izaak Walton League – American Wetlands Campaign and Save Our Stream Curriculum
North American Association for Environmental Education
USGS Water Resources Outreach Program
Yahara Watershed Education Network
Earthforce Global Rivers Environmental Education Network
The Global Rivers Environmental Education Network (GREEN) is a national network of schools and communities working together to meet critical water resource challenges through a combination of environmental education and civic action. GREEN builds on national academic standards and teaches elementary, middle and high school-aged youth essential skills including critical thinking, teamwork, problem solving and the application of science to real world problems. Additional information can be found at http://www.earthforce.org/section/programs/green/.

Michigan Department of Environmental Quality
The Michigan Department of Environmental Quality (MDEQ) has spent $1 million of the Clean Michigan Initiative funds working with the Department of Education to develop and disseminate sound science-based supplementary environmental curriculum materials for use by Michigan educators. The five unit topics include: Air Quality, Ecosystems, Energy and Resources, Individuals’ Impact on the Land, and Water Quality.

Additional information (classroom resources, grant opportunities, and speaker request forms) can be found at http://www.michigan.gov/deq/ under “Key Topics” → “Environmental Education”.

United States Department of Agriculture
This website features links to wetlands information for middle and high school students. Links to education programs used in different states and programs produced by the EPA are also available. The website can be accessed by visiting http://www.usda.gov/ and selecting “Education and Outreach” from the ‘Browse by Subject’ menu.

Environmental Protection Options for Local Governments
The MDEQ maintains a web site that hosts the document “Filling the Gaps: Environmental Protection Options for Local Governments”. This document helps local governments sift through the maze of protecting the environment from a top down approach: applicable federal laws, applicable state laws, how these apply to various environmental features, and options for local governments authorized by federal and state law to protect the various environmental features. The site can be accessed by going to http://www.michigan.gov/deq/ then selecting “Water”, then “Great Lakes”, then “Coastal Management”. The document is listed in the “Information” section.


Ordinances, Zoning, and Development Standards
Watershed protection requires employing a broad range of environmental protection planning and regulatory options at the local government level. The techniques, designed to minimize negative impacts of land use decision, can be used separately or in most cases together, to establish the amount of protection and effort a community is comfortable with. This effort can range from simply targeting peak flow reduction of stormwater runoff into waterbodies to attempting total watershed protection. The techniques that are selected need to be crafted with professional planning and legal assistance to fit each community and its natural resources.

The remainder of this section presents three levels of planning that need to be considered in watershed protection: ‘Coordinated Planning’, ‘Zoning’, and ‘Advanced Regulation’. Coordinated Planning and Zoning are the most familiar options, but Advanced Regulation tends to provide the most powerful protection authority. These three levels are discussed in the following subsections, along with some additional considerations.
Coordinated Planning

The first step for a local government to protect its watershed is to prepare a future land use plan in cooperation with neighboring jurisdictions. Future land use plans (also known as Comprehensive Plans or Master Plans) should be based on a comprehensive inventory of natural resources and environmental features. Because the environment knows no jurisdictional boundaries, the most effective plans are developed when communities work together, as this prevents competing or incompatible actions. If one community along a river approves development in a floodplain, downstream communities are likely to be flooded. If one community on a lake adopts keyhole development regulations, but other communities abutting the same lake do not, then achieving the objective of preventing overuse of the surface of the lake is not likely to be achieved. If one community establishes a buffer zone around sensitive environmental areas, but abutting jurisdictions do not, then the benefits of the buffer zone will be limited. These examples demonstrate the importance of communities working cooperatively in the development of plans and the implementation of programs to protect our natural resources.

A future land use plan sets forth the desired pattern of land uses in the community for the next 20 to 30 years. It creates the basis for planning for new roads, sewers and water infrastructure to meet the needs of the land uses displayed on the map. Future land use can work with nature, or against it. Communities can plan to keep development out of floodplains and population density low along waterbodies. Communities can plan to preserve greenbelts for wildlife and vegetation along waterbodies to help filter stormwater runoff and provide space for trees to shade streams, keeping them cold enough for sportfish like trout. By planning with nature, they can preserve the characteristics of nature that immeasurably add to our quality of life. Following is a list of key strategies that communities can follow in the development of local future land use plans to help protect the environment and natural resources for use and enjoyment by both present and future generations:

- Prepare local future land use plans based on a comprehensive inventory of natural resources;
- Keep density and intensity of land use low near and along watercourses;
- Avoid developing in sensitive areas like floodplains, wetlands, environmental areas, sand dunes and high risk erosion areas;
- Plan for greenbelts and buffers along watercourses;
- Provide for links between natural areas so wildlife have safe corridors to move within;
- Protect renewable natural resources like farm and forest land in large blocks; and
- Set forth the specific zoning and other land use regulations that should be adopted to promote wise natural resource management and environmental protection.

The future land use plan provides the legal foundation for local land use regulations. If the community wishes to protect natural resources and the environment through local land use regulations, then it must have a basis for these regulations in the future land use plan and then adopt zoning...
and related regulations consistent with the plan. However, to realize the maximum benefit, communities must coordinate the future land use plan with the planning efforts of adjoining communities.

Due to the built-out nature of the subwatershed, planning activities should focus on redevelopment issues. Urban redevelopment decreases suburban development pressures (such as in other areas of Southeast Michigan) and provides opportunities for aesthetic and water quality benefits (see the ‘Site Plan Requirements / Better Site Design’ discussion under the ‘Option 2’ topic in the ‘Advanced Regulation’ subsection.

Zoning
Zoning is the principal local tool for guiding land use change in a community. Zoning classifies land uses into zones or districts generally on the basis of land use intensity ranging from “high” (e.g. industrial) to “low” (e.g. nature preserve) intensity. The range of intensity is based largely on environmental impacts and infrastructure needs of the land use. A zoning map illustrates the location of various zones or districts within a given jurisdiction. Within each zone, a range of land uses are permitted by right, or after some special review and approval process. The zoning ordinance establishes development standards for each mapped district. This includes the uses permitted, building height, bulk, lot size, setback, minimum yard and related standards. If the zoning ordinance has appropriate standards to protect our waterways and minimize harm to them as new development occurs, then not only the present generation, but also future generations will benefit.

Advanced Regulation
There are many regulatory options communities may consider in protecting the watershed. This section describes three regulatory options that are available to communities to better protect their local lakes and streams. These options are not mutually exclusive nor are they interdependent; communities could adopt some or all of the measures in the first option as well as some or all of the second or third options, or vice versa. Because of this flexibility and the potential complexity, it is important that properly trained planners and attorneys be involved in adapting sample ordinance language to a community’s planning and regulatory structure. The options are discussed below:

- The first option is model ordinance language that specifically addresses stormwater management. These models could be adopted as overlay zones in the zoning ordinance, or as a separate ordinance that applies to development in particular locations, in addition to zoning;
- The second option is a series of brief ordinance provisions that address common natural resource and environmental protection concerns associated with stormwater management. These provisions are commonly found in zoning ordinances across the state; and
- The third option focuses on coordinating land use permit review and approval procedures between the MDEQ and local zoning authorities. This approach is based on refining the local site plan review procedure (as are some of the techniques in the second option).

Additional measures to consider are presented at the end of this subsection.
Option 1 – Adopt Model Ordinance Language Targeted at Stormwater

Separate statutory authority exists for local units of government to adopt regulations to protect the following natural resources:

- Wetlands;
- Environmental areas (e.g. sand dunes, submerged lands, forests);
- Soil erosion and sedimentation control;
- Inland lakes and streams;
- Natural rivers;
- Floodplains;
- High risk erosion areas; and
- Landmark trees.

The Michigan Department of Natural Resources (MDNR) in 1996, prepared model ordinance language to guide local governments in the preparation of ordinance language applicable to each of these natural resources - except for environmental areas. There are many variations of some of these models. All but the soil erosion and sedimentation model ordinance language is structured as an overlay zone.

An example of an overlay zone is illustrated in Figure 7-1. The letter designations in the figure refer to existing zoning types (e.g. AG = agriculture; RR = rural residential).

Figure 7-1. Example of an Overlay Zone.

In an overlay zone, the special environmental provisions only apply in a limited area which is usually depicted on a map. For example, the floodplain regulations only apply to the area defined as a floodplain. This is usually an area that may be inundated by a flood with an average frequency of being equaled or exceeded once each 100 years.

Model ordinance language can be incorporated into a separate section or article of the local zoning ordinance or adopted as an independent police power ordinance. Cities, villages, townships, and, to a lesser extent, counties in Michigan have authority to adopt police power regulations. The public purpose of the regulation must be stated in the ordinance and must advance one or more aspects of the public health, safety and general welfare. Some communities adopt environmental regulations as separate ordinances outside of the local zoning ordinance in order to “shelter” the zoning ordinance from any legal attacks that may be directed at the

Macomb County Model Ordinances

The Macomb County Department of Planning and Economic Development (MCPED) has developed a number of model ordinances for use by local communities. The currently available model ordinances are:

- Storm Water Management;
- Floodplain Management;
- Wetlands Ordinance;
- Overlay District;
- Natural Feature Setback;
- Native Vegetation; and
- Woodlands and Trees.

Due to the initial success of this program, the MCPED is working with Southeast Michigan Council of Governments to further explore the implementation and application of the more pertinent ordinances.

The ordinances are available online at:
http://macombcountymi.gov/planning/index.html

Source: MCPED, 2005.

County Stormwater Standards

The Macomb County Public Works Office (MCPWO) is in the process of updating its design standards manual for the control of post-construction runoff from new development and significant redevelopment. The design standards are expected to be adopted in 2007.

The Wayne County Department of Environment (DOE) has adopted a storm water management ordinance and developed a standards manual to support its implementation.
ordinance. Should a court find that the community had adopted or was administering the ordinance improperly, the judge could invalidate all or part of the ordinance without in any way affecting or undermining the integrity of the local zoning ordinance. Another reason why some communities choose to adopt separate police power ordinances is because they do not have to protect nonconforming uses (unless the statute they are operating under specifically requires protecting them). A nonconforming use is one that pre-existed the zoning ordinance or an amendment to the zoning ordinance. Such a use is considered “grandparented” and is allowed to continue in the future in the same manner and to the same extent as it did when it became nonconforming. When nonconforming uses are not protected, then even without a proposed change to the property, it could be required to be brought into conformance with the new regulations.

Option 2 – Zoning Ordinance Provisions that Cover a Wide Range of Environmental Issues

Many local units of government are unwilling to take on the significant administrative responsibilities and potential liability associated with implementation of some or all of the model ordinance language described in the first option above. Nevertheless, they cherish protection of Michigan’s environment and natural resources as much as the next community and want to do their part in ensuring it is protected. Short, simple approaches to environmental and/or natural resource protection are presented below and in the dialog boxes on this and the following page.

Environmental Assessment Requirements

When projects are proposed in or adjacent to sensitive natural resources, some communities require applicants to submit an environmental assessment which details the impact of the proposed development on natural resources. Communities that have plans and zoning regulations based on a solid environmental inventory are able to set the threshold for future environmental assessments at a defensible level. Without such a basis, an environmental assessment may be considered arbitrary as there is little context for the requirement. An environmental assessment can be a valuable source of information, and in some cases an important tool for ensuring that new development is designed in such a way that unavoidable environmental impacts are properly mitigated. Environmental assessments can also be viewed as an affirmative tool for helping a local government meet its responsibility for preventing pollution, impairment or destruction of the environment.

Shoreline Protection Provisions

More refined shoreline provisions may address a host of other environmental protection issues such as the application of fertilizers or weed killers in near shore and stream bank areas, the trimming of shoreline vegetation for views, prohibitions on removal or replacement of natural shoreline vegetation with grass or ornamental landscaping, or requiring restoration of damaged natural vegetation on stream banks. These regulations tend to vary dramatically across the state, but for the most part, provide some measure of protection from overuse or removal of natural vegetation near the shore. These may also be called buffer strip or greenbelt provisions.
Groundwater Protection Standards
The Michigan Department of Public Health and MDNR, and more recently the MDEQ, have widely collaborated with hundreds of Michigan communities to develop and implement groundwater protection standards as a part of the local site plan review process. In most cases, communities adopting sample ordinance language also included standards to ensure protection of surface waters from land uses that had the potential to pollute, impair or destroy soil and water resources. These standards have many parallels to stormwater protection and the cooperative effort between the state and local governments on this issue has piloted the way for continuing this approach on a wider scale. Groundwater protection standards are fundamental public health and safety measures that should be adopted by local governments throughout the state.

Sensitive Area Protections
Instead of targeting specific natural resources for protection by means of a single regulatory approach, many communities have folded basic separation distances (setback provisions) into sensitive area or natural features provisions. These regulations list a set of sensitive areas or natural features in the community and require that all new structures or intensive use areas of the proposed development be set back at least a certain distance from the identified natural feature. Such provisions have been applied to shoreline, waterfront, floodplain, wetland, woodland, sand dune, and high risk erosion areas. Because of a Michigan Attorney General opinion (No. 6892, March 5, 1996) that says setbacks from wetlands may not be required under a wetland ordinance, but may be required if properly crafted as part of a zoning ordinance regulating natural features, it is important for communities to be very careful about how natural features are defined and how such regulations are crafted. In some ordinances these provisions are called buffer strip or greenbelt provisions.

Site Plan Requirements / Better Site Design
Next to placing land into various zoning districts, site plan review is the most powerful planning and watershed protection tool. Easily enforced, site plan review is a way for communities to ensure what is approved on a site plan is what will be built. A site plan is a plan, drawn to scale, showing the layout of proposed uses and structures. Site plans include lot lines, streets, building sites, existing structures, reserved open space, utilities, and any other required information. The Center for Watershed Protection (www.cwp.org) and the Low Impact Development Center (www.lowimpactdevelopment.org) can provide additional information.

Communities can require a number of sustainable development best management practices such as landscaping standards, use of native plant species, on-site stormwater best management practices, percentage of allowable impervious coverage, and a host of other environmental design considerations through the use of site plan requirements and reviews.

In built-out areas, it is important that redevelopment be addressed through these requirements. Built-out areas are typically characterized by high imperviousness and as such have impacted natural resources (e.g. loss of wetlands, water quality degradation). A redevelopment offers an opportunity to incrementally reverse such impacts through:

1) reducing imperviousness by means of green roofs, permeable paving, reduced parking lot requirements, and landscaping;

Better Site Design Options
Some options for better site design include:
- Decreased number of parking lots;
- Providing compact car parking spaces and minimizing stall dimensions;
- Encouraging shared parking;
- Minimizing required street pavement width based on need to support travel lanes, street parking, and emergency, maintenance, service vehicle access;
- Optimizing street layout to minimize total roadway length;
- Minimizing required street right-of-way widths to accommodate travel-way, sidewalk, and vegetated open channels;
- Minimizing the number of street cul-de-sacs and reducing cul-de-sac radius to accommodate emergency and maintenance vehicles;
- Considering alternative turnarounds, including the use of mountable curbing and grass shoulders for occasional access by fire trucks and other large commercial trucks;
- Promoting flexible design standards for residential subdivision sidewalks such as locating sidewalks on only one side of the street and providing common walkways linking pedestrian areas; and
- Relaxing side yard setbacks and allowing narrower frontages to reduce total road and driveway lengths within the community.
2) incorporating practices to treat runoff before it leaves a site (e.g. rain gardens, tree boxes, rain barrels, cisterns, sand filters); and/or
3) a payment of fees to allow the local jurisdiction to implement practices on public land or at public facilities that will offset the water quality impacts (MDE, 2000).

Most ordinances automatically call for site plan review of industrial, office, commercial, and multi-family uses. But communities can require that other uses, even uses allowed by legal right, go through a site plan review.

For example, proposed single family home construction in areas where wetlands, critical habitat, or other unique natural features exist can be regulated to protect these features through the site plan review process. Communities can also adopt provisions addressing preservation of mature trees, preventing light pollution, and other design mechanisms which in turn protect community character.

For environmental, as well as aesthetic concerns in a community, site plan review (of both drawings and written requirements) is one of the best overall zoning tools that can be implemented by local governments. Site plan requirements are a good way of eliminating any development “surprises” and also serve as a mechanism for working with a community’s natural features.

Option 3 – Coordinated Permit Review and Approval Procedures

An effective way to combine the strength of local zoning with the weight of state environmental permitting and enforcement is for local governments to coordinate zoning decisions with the MDEQ and MDNR when sensitive natural features are involved. When local governments have appropriate, but limited environmental protection standards in the zoning ordinance, they can condition final development approval on receipt of necessary permits from the state government. This type of coordinated review and approval process helps ensure key environmental and natural resources are protected as new development occurs. Many communities have informally been working with the MDEQ/MDNR this way for years. In some cases, more formal coordinated review procedures are desirable and can be beneficial to all involved parties. One form for such an agreement is a memorandum of understanding that spells out state and local responsibilities.

This approach is possible because all three zoning enabling acts permit local governments to condition approval of zoning permits generally and site plan review specifically, on approvals under statutes administered by other governmental agencies (see for example MCL 125.286e(4) and (5), the Township Zoning Act; MCL 125.216.e (4) and (5) of the County Zoning Act and MCL 125.584d (4) and (5) of the City-Village Zoning Act).

This approach is especially desirable because local governments can be additional “eyes and ears” for natural resource protection, while leaving the environmental permit and enforcement decisions to the state agencies that have the technical wherewithal, the statutory responsibility and the ability to absorb any liability for the decisions made. For small and rural communities especially, these are huge considerations. In the end, development proposals that do not meet both state environmental standards, and local zoning standards are not approved. Projects whose site plans do meet the standards of both local zoning ordinance and state regulations must be approved.

Professional Reviews

Some governments may lack the kind of professional staff available to perform a thorough technical review of all the complex elements of many contemporary development proposals. Everything from issues associated with stormwater retention, sewage disposal or water supply, or the impacts on wetland species from partially filling a wetland for an access road, may be beyond the scope of available staff. In these cases, a community needs to hire outside professionals to perform reviews of development applications to ensure conformance with ordinance requirements. Communities are often unwilling to hire outside experts because they don’t want the cost to be borne by existing taxpayers. A recent appellate court decision has demonstrated that a community can collect fees in escrow to pay for the cost of professional reviews, provided the community has a provision enabling such fees in its zoning ordinance, and it returns to the applicant any unused fees (see Cornerstone Investments v. Cannon Township, 459 Mich 908 (1998); after remand, 239 Mich App 98, 1999). This ruling means no community need go without the professional expertise necessary to ensure a project meets ordinance requirements.
Additional Measures to Consider

Four other common zoning techniques that have significance as regards to certain decisions affecting natural resource and environmental protection are presented below.

Nonconforming Uses

Uses of land that pre-date the zoning ordinance or an ordinance amendment that no longer comply with zoning regulations are called nonconforming uses. Essentially, these uses are protected from changes created by new zoning regulations. Local governments are permitted to restrict or prohibit expansion or structure additions of nonconforming land uses or structures, with the long-term goal of eventually phasing them out. In riparian areas, local planning officials have an opportunity to address the rapidly changing dynamic of their shoreline through the manner in which nonconforming uses are regulated. For example, if a nonconforming structure exists on a property and is demolished, a new structure cannot replace it without conforming to the current zoning or other applicable regulations. This situation has become increasingly common in recent years as small coastal cottages are torn down and replaced by much larger single family or multifamily dwellings. This presents an opportunity to gain conformance with ordinance requirements, which should be sensitive to watershed protection considerations.

Rezoning

The process of changing from one zoning district classification to another is called rezoning. The most fundamental question which must be asked regarding a rezoning request is whether the area proposed to be rezoned is an appropriate area for the permitted uses in the proposed zone. Typically, rezoning requests are made for the purpose of increasing the intensity of the use of a parcel. In riparian areas, where there are significant, fragile natural features such as critical habitats and wetlands, rezoning from a low-intensity use classification to a high-intensity use classification could have significant ecological impacts.

Special Land Uses

Special land uses, also called conditional uses or special exception uses, are uses of land that are allowable within a particular zone only when the proposed activity meets a defined set of standards that are particular to that use and are included in the zoning ordinance. Site-specific issues can be addressed using these designations as opposed to the more general considerations typical of a zoning district.

The dominant land use in a district is usually a use “by right”, such as farmland in an agricultural district. Special use provisions can provide communities with the opportunity to control certain activities not allowed “by right”, but commonly associated with “by right” uses. Typical special land uses include communication towers, churches, junkyards, private airfields, etc.

Marinas are another type of activity that can be controlled through special land use permits. A community can establish provisions for dock length, number of allowable slips, types of boats, setbacks, and a number of other environmental considerations. By defining special use standards for such activities, local governments can determine what type of marina will be allowed in their community prior to development. Special land uses often

The Marina at Windmill Park

Photo courtesy of MCPWO.
prompt concerns from the public regarding potential effects on surrounding property values, traffic, noise, litter, and neighborhood character. It is very important for planning officials to consider if a special land use is consistent with the character of the area and is also consistent with the future land use element of the master plan before permitting them.

**Variances**

A variance is a legally granted action to waive a requirement in a zoning ordinance. If a community grants a variance, it permits one property owner to do something that is otherwise not permitted in the zoning ordinance. As a result of the zoning enabling acts, most zoning ordinances and court cases have a very narrow set of circumstances that must exist before a variance can be lawfully granted. In most cases, if a property owner can use the land for the desired use, or place a structure or addition elsewhere on the land without a variance, then the variance is not appropriate. As is apparent, the improper granting of a variance can quickly undermine the integrity of the zoning ordinance. This is even more consequential when the variance has the effect of undermining the integrity of natural resources. In general, if communities adopt zoning measures to protect natural resources and prevent pollution, impairment or destruction of the watershed, they should consider variance requests very carefully and only grant them when not doing so would preclude the land owner from otherwise exercising a lawful property right. Even then, the community should consult with environmental professionals and attorneys familiar with zoning and environmental law.

**Land Division and Subdivision Ordinances**

Two of the local regulatory tools with the greatest potential to minimize harm in sensitive environmental areas are regulations that apply to land divisions and subdivisions. These are usually two separate ordinances that are linked to the zoning ordinance, but because the authority for them derives from a statute different from the zoning enabling acts, they are adopted as separate ordinances. The first is usually known as a land division ordinance. The second is usually called a subdivision or plat ordinance. However, in extensively built-out areas, these options are of little use as the land has already been divided and subdivided.

**Public Spending and Capital Improvement Programs**

Another important way to protect sensitive natural features is to watch how, where and when the public spends money on public facilities. Where new public facilities are constructed and where they are not can have profound effects on natural resources. The extension of sewer and water lines into a sensitive environmental area or the construction of a new road along a large wetland will have significant long term impacts—many of which could be negative. At the same time, the construction of a sewer line around an inland lake being contaminated by leaking septic tanks can help restore water quality in the lake. Communities that work with nature avoid creating the conditions which promote intensive development in areas with a large area of sensitive natural features.

Large capital improvements should be planned to meet future needs and should be based on the future land use plan or master plan—just as zoning should be. When the master plan has a solid foundation on a natural features inventory, future land uses will be planned in locations to avoid negative impacts on sensitive natural features. Subsequently, future
capital improvements will then be located to accommodate needed community growth in locations that don't negatively affect sensitive natural features. The best tool for planning for future public improvements is the capital improvement program (CIP). This is a schedule of proposed capital improvements for future years. It specifies where the facilities are proposed to be located, what their cost will be, the means of financing and when they will be constructed. Each year the CIP is updated. This process permits plenty of time to examine the CIP for its environmental friendliness and to ensure that public investments aid, rather than diminish, the quality of local natural resources.

**Good Housekeeping and Pollution Prevention**

Watershed protection requires that actions be taken to minimize the environmental exposure of pollutants. These actions include preventing the generation of potential pollutants, implementing procedures to ensure that existing compounds are handled and disposed of in such a way that they never become pollutants, and inspecting infrastructure that handles pollutants to ensure it is working correctly. Some examples for which pollution prevention and good housekeeping apply include: the storm sewer system (including illicit discharges), the sanitary sewer system, municipal facilities, managed and manicured turf, solid waste management facilities, commercial facilities (e.g. chemical spills), and septic systems.

Some agencies and programs that can provide assistance in this area are discussed in the following subsections.

**The Michigan Department of Agriculture**

Information on the following programs can be obtained through the Michigan Department of Agriculture’s (MDA’s) website at http://www.michigan.gov/MDA/.

**The Michigan Groundwater Stewardship Program**

The goal of the Michigan Groundwater Stewardship Program (MGSP) is to provide information and assessment tools for pesticide and nitrogen fertilizer users. The MGSP helps them identify risks to groundwater associated with their pesticide and nitrogen fertilizer use practices and to coordinate local, state, and federal resources to help individuals reduce those risks. The MGSP is designed to be voluntary, to be locally driven, to address the concerns of individuals, and to maintain a focus on financial and technical constraints which guide decision making. The following programs are administered through the MGSP:

*Home*A*Syst

Home*A*Syst is a household assessment tool that can be used to help identify risks and provide information on how to lower your risks to groundwater contamination around the home. Home*A*Syst helps protect your drinking water, the environment, your health, and the health of your family.

*Abandoned Well Closures*

The objective of abandoned well closure is to reduce the risk of contaminants moving down an abandoned well and contaminating groundwater supplies. Stewardship Teams determine local cost-shares, which are often as high as 75 to 90 percent of the total cost.
MDEQ – Water Programs
Information on the following programs can be obtained through the MDEQ’s website at http://www.michigan.gov/deq/.

Biosolids & Industrial Pretreatment Program
To further preserve and protect Michigan’s water resources, the MDEQ encourages and enforces the use of wastewater treatment systems through the Industrial Pretreatment Program.

Drinking Water
The MDEQ has primary enforcement authority in Michigan for the Federal Safe Drinking Water Act under the legislative authority of the Michigan Safe Drinking Water Act. The MDEQ also investigates drinking water well contamination, and oversees remedial activities at sites of groundwater contamination affecting drinking water wells.

The Michigan Wellhead Protection Program
This program assists local communities utilizing groundwater for their municipal drinking water supply systems in protecting their water source.

Emergency Response
The MDEQ operates the Pollution Emergency Reporting System (PEAS), a unified 24-hour hotline for reporting environmental emergencies, including those related to the twenty-six state and federal regulations requiring chemical release notification. The MDEQ is also responsible for implementing the Part 5 Rules - Spillage of Oil and Polluting Materials. The Part 5 Rules deal with the storage and release of oil, salt, and polluting materials.

Groundwater Discharge Program
The Groundwater Program regulates discharge to groundwater under Part 31, Water Resources Protection, of the Natural Resources and Environmental Protection Act, 1994 PA 451 and Part 22 Rules.

Groundwater Modeling Program
The Groundwater Modeling Program has provided groundwater modeling support on a department-wide basis since 1980 when an EPA grant was used to fund groundwater models for site remediation.

Inland Lakes and Streams
The State’s water resources are monitored by the MDEQ and partnering organizations to determine water quality, the quantity and quality of aquatic habitat, and the health of aquatic communities, and compliance with state laws.

"Joint Permit Application"
This package covers permit requirements pursuant to state and federal (MDEQ and USACE) rules and regulations for construction activities where the land meets the water and including wetlands, often referred to as the land/water interface.
Surface Water
The MDEQ is committed to protecting and preserving Michigan’s water resources. There are numerous programs supporting this goal, including:

Enforcement
The Surface Water Enforcement Unit is responsible for conducting all escalated enforcement actions taken by the division. These actions are conducted in response to violations of state water pollution control statutes and rules, violations of surface water discharge permits, and any violations of administrative or judicial orders.

NPDES Permits
The MDEQ administers the federal NPDES permitting program at the state level. This program restricts pollutant discharges to waterbodies and sets strict effluent concentration and loading limitations on those facilities that must discharge to waterbodies, such as waste water treatment plants.

Water Quality Trading Program
The State of Michigan is developing a statewide water quality trading program. Water quality trading will allow facilities facing high pollution control costs to meet their regulatory obligations by purchasing environmentally equivalent pollution reductions from another source at lower cost, thus achieving the same water quality improvement at lower overall cost.

Septage
The MDEQ enforces rules for the handling of domestic septage and licenses the haulers wishing to do so. The program provides technical assistance as well as contacts for staff, haulers, and end-users.

Sanitary and Combined Sewer Overflow
The MDEQ has broad regulatory authority to deal with SSOs and CSOs. The SSO/CSO program includes setting policy, reporting occurrences, and initiating enforcement actions against offending entities.

Water Management
The MDEQ regulates activities that may have potential impacts to the public trust, riparian rights, or may impair or destroy the waters or other natural resources of the state, including inland lakes and streams, the Great Lakes, wetlands, and groundwater.

Michigan Water Quality Monitoring
The MDEQ has several water quality monitoring programs that assist in keeping all of Michigan’s waters clean. These programs include Beach Water Monitoring, Assessment of Michigan Waters, Inland Lakes Monitoring, and Public Swimming Pool Monitoring.

MDEQ – Other Programs
Land Development: On-Site Sewage Disposal Systems
The MDEQ has promulgated rules for on-site sewage disposal systems (OSDS) as they apply to the Land Division Act. The MDEQ also issues numerous reports regarding the status of OSDS in the state and provides technical assistance.

Waste and Hazardous Materials Division
The Waste and Hazardous Materials Division (WHMD) administers a diverse number of prevention programs to protect the environment and the public’s health through proper management of hazardous products; solid, liquid, medical, and hazardous waste; and radioactive materials.
The Michigan Department of Transportation

Information on the following programs can be obtained through the MDOT’s website at http://www.michigan.gov/stormwatermgt/.

Educational Materials

MDOT provides educational and outreach materials that describe how pollution prevention and good housekeeping can be implemented on transportation, and related, structures. Available information includes the types of BMPs that can be implemented on or near roads and car care tips to prevent pollution.

Drainage Manual

The MDOT Drainage Manual defines specific practices and the standards thereof that are implemented to minimize the pollutant-related impacts of transportation infrastructure.

Stormwater Best Management Practices

As described by the US EPA, stormwater nonpoint source pollution diminishes water quality in the United States. To reduce the impact, it is important that watershed protection measures include examination of best management practices (BMPs) used to reduce the amount of pollution entering receiving water bodies. Since development causes hydrological changes in the watershed, BMPs must also be chosen to mitigate this effect. A number of BMP types are presented below:

Soil Erosion and Sediment Control

Good soil erosion and sediment control (SESC) is a critical watershed protection tool that protects surface waters from the effects of sedimentation, flooding, and other property damage. SESC can be divided into two distinct components: construction related and non-construction related.

Construction Related SESC

Although construction related SESC is not a requirement of the Watershed-based Permit, a brief discussion is warranted.

In the State of Michigan, county enforcing agents (CEAs) are authorized under Part 91 of Public Act 451 to require that a permit be obtained for any land disturbance greater than 1 acre or within 500’ of a waterbody (except for exempted crop production practices). Authorized Public Agencies (APAs) are exempt from obtaining a permit, but must notify the appropriate enforcing agency in advance and must follow the SESC guidelines stipulated in the Act.

The MDEQ, through Part 31 of Public Act 451 (a.k.a., 'Permit by Rule'), requires any land disturbance greater than 5 acres to obtain a Notice of Coverage in addition to a soil erosion control permit from the local county enforcing agents (CEA) or municipal enforcing agents (MEA).

Persons engaged in agricultural practices may enter into an agreement with the conservation district instead of obtaining a permit from a CEA or MEA.

Additional information can be obtained from:
Michigan Department of Environmental Quality
Water Bureau, Storm Water Administration
PO Box 30657
525 West Allegan, 2nd Floor, Lansing, MI 48909-8157
Non-Construction Related SESC
This type of SESC includes any activity that is not undertaken in relation to an active construction site. General activities of non-construction SESC include:

- Repairing bare soil such as occurs on poorly maintained yards or eroding hillsides;
- Repairing and stabilizing stream banks that are eroding;
- Repairing roads and associated transportation structure that are eroding or causing nearby erosion;
- Excluding sensitive uses from occurring near waterbodies, especially within the riparian corridor;
- Insuring sediment generating sites install proper controls to prevent sediment from leaving the property;
- Providing controls in sensitive areas to ensure that sediment is not transported by wind;
- Installing structural controls at inlets to, or inside of, the storm sewer system to ensure sediment does not travel to receiving waterbodies; and
- Encouraging the implementation of agricultural runoff BMPs that prevent soil particles from traveling to nearby waterbodies.

Many other techniques, such as street sweeping, may be considered non-construction SESC. Many of these techniques have been included under other headings (e.g., street sweeping is considered pollution prevention).

Impervious Surface Mitigation
Impervious surface mitigation is a broad category comprised of practices designed to directly reduce impervious surface and/or treat the runoff from impervious areas. Some of these practices have the characteristics of the practices discussed in the following subsections (‘Infiltration Practices’, etc.) This category focuses on retro-fit implementation, but the practices herein can be implemented on new development and/or incorporated into ordinances, zoning, or development standards (discussed previously in this chapter). Common mitigation practices include:

- Vegetated Parking Lot Islands – vegetated depressions receiving runoff from parking lots and other impervious surfaces for infiltration into ground and filtration before discharging to storm sewer system or waterbody;
- Vegetated Road Medians and Side Ditches – vegetated channels in the median or along the side of a road, functioning similar to parking lot islands except they also convey runoff;
- Green Roofs – building roofs that are covered with vegetation and soil planted over a waterproof membrane to retain and evaporate rainfall and slow its runoff;
- Pervious Pavement and Asphalt / Paving Bricks – alternative paving types that allow for the percolation of water into subgrade soils or an engineered sub-base that facilitates infiltration and/or slow discharge to the storm sewer system;
- Rain Barrels and Cisterns – storing of rooftop runoff for later use as irrigation or other non-potable applications, these only provide benefits if water is used or drained between rainfall events;
- Bridge Scupper Drain Treatment – install piping on bridge scupper drains to ensure runoff does not directly drop into

BMP Resources (cont’d)
- EPA’s National Menu of BMPs; cfpub.epa.gov/npdes/stormwater/menuofbmps/index.cfm
Some of these resources have been consulted in the development of this section.

Impervious Surface Mitigation Scorecard
Impervious surface mitigation practices provide wide-ranging water quality and water quantity benefits. The information presented below is for comparative purposes only. Values to be used for design purposes or to calculate pollutant load reductions should be determined through additional research.

<table>
<thead>
<tr>
<th>WATER QUALITY REMOVAL CATEGORY EFFICIENCY*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
</tr>
<tr>
<td>Phosphorus</td>
</tr>
<tr>
<td>Metals (Cd, Cu, Pb, Zn)</td>
</tr>
<tr>
<td>Nitrogen</td>
</tr>
<tr>
<td>Pathogens</td>
</tr>
<tr>
<td>Toxins</td>
</tr>
</tbody>
</table>

* Efficiency = % removal of influent concentration (median)


<table>
<thead>
<tr>
<th>WATER QUANTITY CATEGORY APPLIC.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Protection</td>
</tr>
<tr>
<td>Overbank Flood Protection</td>
</tr>
<tr>
<td>Extreme Flood Protection</td>
</tr>
<tr>
<td>Recharge Volume</td>
</tr>
</tbody>
</table>

** Applicability = suitability of practice for given purpose; H=High, M=Medium, L=Low

Source: Minnesota, 2005.
Additional Considerations

Mitigating impervious surfaces can also be addressed by: 1) cutting out concrete and planting trees or constructing planter boxes; 2) placing planter boxes on top of existing impervious surfaces; and 3) utilizing native vegetation wherever possible.

Infiltration Systems Scorecard

Infiltration practices provide wide-ranging water quality and water quantity benefits. The information presented below is for comparative purposes only. Values to be used for design purposes or to calculate pollutant load reductions should be determined through additional research.

<table>
<thead>
<tr>
<th>WATER QUALITY</th>
<th>REMOVAL CATEGORY</th>
<th>EFFICIENCY*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Metals (Cd, Cu, Pb, Zn)</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Pathogens</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Toxins</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

* Efficiency = % removal of influent concentration (median)


Infiltration Systems

In general terms, infiltration systems can be described as natural or constructed depressions located in permeable soils that capture, store, and infiltrate stormwater runoff. These depressions can be located at the surface of the ground or they can be designed as underground facilities. Common infiltration practices include:

- Rain gardens – small depressions typically planted with native vegetation, no structural infrastructure;
- Tree boxes – ground-level or raised vegetation-filled boxes with open bottoms connected to soils;
- Bioretention facilities – large depressed areas with engineered soils and native planting, typically with supporting infrastructure such as overflows to the storm drain system;
- Infiltration basins – natural or constructed impoundment;
- Infiltration trenches – shallow excavated trenches, 3 to 12 feet deep, backfilled with coarse stone aggregate;
- Porous pipe – underground pipes made of porous substance or with weep holes that allow infiltration as water flows;
- Dry wells – smaller variation of infiltration trench;
- Underground systems – typically pre-manufactured structures that are buried in space-limited locations; and
- Water spreading / irrigation – involves the reuse of stored runoff water for land-based functions such as crop irrigation.

Benefits of infiltration systems include:

- Reduced stormwater runoff volume;
- Increased groundwater recharge;
- Improved surface water quality; and
- Simulation of pre-development hydrology.

Limitations of infiltration systems include:

- Unusual construction considerations;
- May fail if not properly maintained; and
- May consume land or surfaces available for other uses.

Due to the wide array of possible actions that fall in this category, cost and maintenance requirements range from low cost / low maintenance, such as impervious surface disconnection, to high cost / high maintenance, such as intensive green roof systems.

Infiltration Systems Scorecard

Infiltration practices provide wide-ranging water quality and water quantity benefits. The information presented below is for comparative purposes only. Values to be used for design purposes or to calculate pollutant load reductions should be determined through additional research.

<table>
<thead>
<tr>
<th>WATER QUALITY</th>
<th>REMOVAL CATEGORY</th>
<th>APPLIC.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Protection</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Overbank Flood Protection</td>
<td>M/L</td>
<td></td>
</tr>
<tr>
<td>Extreme Flood Protection</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Recharge Volume</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

** Applicability = suitability of practice for given purpose; 
H=High, M=Medium, L=Low

Source: Minnesota, 2005.
• Potential for groundwater contamination;
• May lose effectiveness over time if not maintained;
• Not recommended in areas with steep slopes; and
• May require landscaping for drought/inundation conditions.

Infiltration systems require semi-annual inspections (clogging, vegetation health, structural elements), regular removal of accumulated trash and vegetation maintenance (mowing, pipe auguring for roots), and extensive rehabilitation upon failure. Construction costs range from 2$ to 7$ per cubic foot of stormwater treated with annual maintenance costs ranging from 5% to 10% of construction costs.

Filtration Systems

In general, filtration systems are structural controls that capture, temporarily store, and route stormwater runoff though a filter bed to improve water quality. Filtration systems can be off-line systems or designed as pre-treatment before discharging to other stormwater features. Common filtration practices include:

• Sand Filters – systems designed to route runoff through sand to remove pollutants, variations include: surface, pocket, underground, and perimeter;
• Organic Filters – generally a surface or pocket variant of sand filter that utilizes an organic media either alone or mixed with sand to increase filtration efficiency; and
• Re-circulating Variant – involves add-on structural components such as a holding tank and pump to store runoff greater than filter capacity for later treatment and to recirculate treated runoff for greater removal efficiency.

Benefits of filtration systems include:

• Good for highly impervious areas with low sediment/high pollutant load (e.g. urban land use and retrofit scenarios);
• High pollutant removal rates;
• May be used in a variety of soil types; and
• Good for the treatment of hotspots because it can be isolated from ground water if contamination concerns exist.

Limitations of filtration systems include:

• Some applications may require indoor location (e.g. dedicated heated building) to ensure proper functioning in Michigan’s cold-weather climate;
• Higher maintenance requirements (facility should be kept dry before it freezes in late fall);
• Some installations (media filters) have higher construction costs;
• Potential to cause odor problems;
• Minimal treatment of soluble nutrients; and
• Potential for nitrification in media filters where aerobic conditions exist.

Filtration systems require monthly inspections to ensure that tributaries areas are stabilized and that the structural components are free of debris. Annual maintenance involves inspecting for clogging and sediment filling, checking the concrete walls, looking for signs of bypassing flow, and correcting these problems, if documented. Costs range from 2$ to 7$ per ft³ with average annual maintenance costs near 5% of construction costs.

Filtration Systems Scorecard

Filtration practices provide wide-ranging water quality and water quantity benefits. The information presented below is for comparative purposes only. Values to be used for design purposes or to calculate pollutant load reductions should be determined through additional research.

<table>
<thead>
<tr>
<th>WATER QUALITY REMOVAL CATEGORY</th>
<th>EFFICIENCY*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>85%</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>50%</td>
</tr>
<tr>
<td>Metals (Cd, Cu, Pb, Zn)</td>
<td>50%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>35%</td>
</tr>
<tr>
<td>Pathogens</td>
<td>35%</td>
</tr>
<tr>
<td>Toxins</td>
<td>80%</td>
</tr>
</tbody>
</table>

* Efficiency = % removal of influent concentration (median)


<table>
<thead>
<tr>
<th>WATER QUANTITY CATEGORY</th>
<th>APPLIC.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Protection</td>
<td>M</td>
</tr>
<tr>
<td>Overbank Flood Protection</td>
<td>L</td>
</tr>
<tr>
<td>Extreme Flood Protection</td>
<td>L</td>
</tr>
<tr>
<td>Recharge Volume</td>
<td>M/L</td>
</tr>
</tbody>
</table>

** Applicability = suitability of practice for given purpose; H=High, M=Medium, L=Low

Source: Minnesota, 2005.
Vegetated Buffers and Natural Conveyance

In general, vegetated buffers and natural conveyance predominantly use vegetation and natural drainage to control stormwater runoff. Depending on the circumstances, some practices may require a minimal amount of structural features. These practices provide runoff reduction and water quality benefits in similar fashion to the infiltration and filtration practices, but do so as they provide water transport, as opposed to storage. Common practices include:

- **Filter Strips** - vegetated surfaces designed to treat sheet flow from adjacent surfaces, function by slowing runoff velocities and filtering out sediment and other pollutants, and by providing some infiltration into underlying soils.
- **Buffers** - areas of natural vegetation (grass, native vegetation, and forest) that filter stormwater as it drains overland, especially useful for treating runoff before it enters sensitive environmental areas such as groundwater recharge areas or streams, wetlands, and lakes.
- **Grassed Channels** - simple drainage ditches with flat bottoms and shallow slopes, a main alternative to curb and gutter in residential areas.
- **Swales** - drainage ditches with enhanced natural vegetation types, compost, and/or rip-rap to enhance pollutant removal, two types include:
  - **Dry Swales** - incorporate engineered underdrains that route percolated runoff, which is treated, to the storm sewer system.
  - **Wet Swales** - eventually intersect the groundwater table.

The benefits of vegetated buffers/natural conveyance systems include:

- Reduced stormwater runoff volume;
- Increased groundwater recharge;
- Improved runoff water quality; and
- Simulation of pre-development hydrology.

The limitations of vegetated buffers/natural conveyance systems include:

- Pollutant removal may be limited;
- Space requirements;
- If not properly designed, they can change the natural flow of surface water and adversely affect downstream waters;
- If the design capacity is exceeded by a large storm event, the vegetation might not be adequate to prevent erosion and the channel might be destroyed. Clogging with sediment and debris reduces the effectiveness of for stormwater conveyance; and
- Ponding can allow mosquitos to breed.

The maintenance requirements of vegetated buffers/natural conveyance systems include:

- Mowing;
- Litter and sediment removal; and
- Spot vegetation repair.

The costs for these practices range from 0.25$ to 0.70$ per square foot with annual maintenance costs averaging $350/acre.
Retention and Detention

Retention and detention is generally accomplished through the use of stormwater ponds and/or stormwater wetlands. Both provide similar water quality benefits, but ponds generally provide more effective water quantity control. These practices are discussed below:

- Stormwater ponds – constructed basins that: 1) receive and hold runoff to improve water quality through settling and biological uptake; and 2) prevent downstream channel degradation or flood damage through peak flow reduction (detention) and total runoff reduction (retention); variation include:
  - Dry Detention – primarily designed for flood control; generally grass-lined so pollutant removal by settling only;
  - Wet – include a permanent pool of water which supports vegetation to enhance biological pollutant removal;
  - Wet Detention – a combination of a wet pond for water quality treatment and detention above the permanent pool for extreme runoff events;
  - Evaporation Basin – similar to a wet pond, but generally shallower to facilitate evaporation; and
  - Reuse – pond which acts as a source for water, primarily irrigation; and

- Stormwater wetlands – constructed shallow marshes that: 1) receive and hold runoff to improve water quality through settling and biological uptake; 2) provide detention and retention benefits similar to, but less effective than, stormwater ponds; and 3) provide additional benefits such as aesthetics and wildlife habitat; variation include:
  - Wetland/Marsh – provide shallow wetland areas and deep marsh areas for different biological treatment types;
  - Extended Detention – similar to the wetland/marsh but with extended storage above the normal water surface;
  - Wetland/Pond – the wet pond situated near the inlet allows pollutants to settle out prior to entering the more environmentally sensitive shallow wetland area; and
  - Submerged Gravel – more like a filtering system in which runoff is treated as it flows through a submerged bed of gravel that incorporates wetland vegetation.

Benefits of retention/detention systems include:

- Able to effectively reduce pollutant loads and control runoff;
- Relatively straightforward pond design procedure; and
- Potential wildlife habitat, aesthetic or recreational enhancement.

Limitations of stormwater ponds include:

- Relatively large space requirement;
- Increase water temperature / cause downstream thermal impact;
- Potential nuisance for insects or odor;
- Poor in areas of low slope, high water table, and shallow bedrock;
- More complicated wetland design procedure; and
- Water quality behavior can change seasonally.

Maintenance includes annual vegetation and sediment accumulation inspections, monthly debris removal, and 5-year to 20-year sediment removal. Construction costs range from $11,000-$57,000/acre-foot. Annual maintenance costs equal 3% to 5% of construction costs.

Retention / Detention Scorecard

Retention / detention practices provide wide-ranging water quality and water quantity benefits. The information presented below is for comparative purposes only. Values to be used for design purposes or to calculate pollutant load reductions should be determined through additional research.

### WATER QUALITY REMOVAL

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>EFFICIENCY*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>75%</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>40%</td>
</tr>
<tr>
<td>Metals (Cd, Cu, Pb, Zn)</td>
<td>50%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>35%</td>
</tr>
<tr>
<td>Pathogens</td>
<td>70%</td>
</tr>
<tr>
<td>Toxins</td>
<td>80%</td>
</tr>
</tbody>
</table>

* Efficiency = % removal of influent concentration (median)


### WATER QUANTITY APPLIC.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>APPLIC.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Protection</td>
<td>H/M</td>
</tr>
<tr>
<td>Overbank Flood Protection</td>
<td>H/M</td>
</tr>
<tr>
<td>Extreme Flood Protection</td>
<td>H/M</td>
</tr>
<tr>
<td>Recharge Volume</td>
<td>L</td>
</tr>
</tbody>
</table>

** Applicability = suitability of practice for given purpose; H=High, M=Medium, L=Low

Source: Minnesota, 2005.
Natural Features and Resources Management

While many of the actions under ‘Ordinances, Zoning, and Development Standards’ serve to protect natural resources, the techniques listed here promote a more active approach that encompasses not only the protection of existing natural features but also their enhancement and restoration, where appropriate.

Land Reserves

Conservation of land helps protect existing water quality from degradation and prevents encroachment into important natural areas such as riparian corridors, wetlands, or critical habitat. Methods for conserving land include: purchasing land, development rights transfer, conservation easements, land trusts, leases, deed restrictions, and covenants.

Many programs are available that conduct or assist with land conservation efforts that can be implemented by any organization, including the WMP participants. Many of these programs, listed below, also provide assistance for natural feature protection and restoration (discussed in the next sub-section).

The Nature Conservancy

The Nature Conservancy’s (TNC) mission is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. TNC has developed a strategic, science-based planning process, called Conservation by Design, which helps them to identify the highest-priority places that, if conserved, promise to ensure biodiversity over the long term. In other words, Conservation by Design allows TNC to achieve meaningful, lasting conservation results. The TNC website is located at http://nature.org/

Michigan Natural Resources Trust Fund

The Michigan Natural Resources Trust Fund (MNRTF) has been in place since 1976. It provides financial assistance to local governments and the Department of Natural Resources (DNR) to purchase land or rights in land for public recreation or protection of land because of its environmental importance or its scenic beauty. It also assists in the appropriate development of land for public outdoor recreation.

The Trust for Public Land

The Trust for Public Land (TPL) is a national, nonprofit, land conservation organization that conserves land for people to enjoy as parks, community gardens, historic sites, rural lands, and other natural places, ensuring livable communities for generations to come. The TPL website is located at http://www.tpl.org/.

Michigan Nature Association

The Michigan Nature Association, established in 1952, is a conservation organization dedicated to protecting Michigan's most exceptional natural habitats and extraordinary or endangered species. Our mission is not only to preserve exceptional land and natural flora, but also to carry on programs of conservation education and scientific study. With the help of our members, MNA now has 163 nature sanctuaries throughout the state for people to enjoy today and forever. The association’s website is located at http://www.michigannature.org/.
Southeast Michigan Land Conservancy
Southeast Michigan Land Conservancy is a non-profit organization dedicated to the preservation and stewardship of natural and agricultural land in the southeast Michigan counties of Livingston, Macomb, Monroe, Oakland, St. Clair, Washtenaw, and Wayne. They also work to educate the public and public policy makers about land conservation issues.

SMLC protects land by purchasing it, by accepting donations of land, and by holding conservation easements to preserve natural features on private parcels. Their focus is on open spaces close to home, and their activities also include participation in coalition efforts to coordinate land use policy, protect open space, preserve scenic beauty, and defend watersheds from harmful development and pollution. The conservancy’s website is located at http://www.southeastmichiganlandconservancy.org/.

Macomb Land Conservancy
The Macomb Land Conservancy (MLC) is dedicated to the preservation of forests, wetlands, wildlife habitats, farmlands, rivers, and streams in Macomb County through: identification and preservation significant natural areas and habitats, supporting the preservation of farmland and the agricultural economy of Macomb County, assisting local communities to plan for growth and development, and conducting public education programs that encourage residents and communities to become stewards of public and private land. The conservancy’s website can be found at http://www.savingplaces.org/.

Natural Feature Protection and Restoration
Not only is conserving land important, but protection and restoration practices must be employed on this land and on private land to ensure that the greatest natural functioning is achieved. Many programs are available that directly participate in these types of activities or provide technical and financial assistance to implement them.

Michigan Department of Natural Resources
The Michigan Department of Natural Resources (MDNR) is responsible for the stewardship of Michigan’s natural resources and for the provision of outdoor recreational opportunities; a role it has relished since creation of the original Conservation Department in 1921. Federal funds support programs for wildlife and fisheries habitat and development, forest management, recreation and other natural resource efforts. The MDNR’s website is located at http://www.michigan.gov/dnr/.

Landowner Incentive Program
The primary goal of the Landowner Incentive Program is to help private landowners and non-profit organizations create, restore, protect, enhance, and manage habitat for species that are rare and/or declining (including wetlands, prairies, savannas, etc.). They do this by providing advice, technical assistance, management plans, and funding to individuals and organizations throughout the state that qualify.

Forest Stewardship Program / Forest Land Enhancement Program
To promote the wise use and stewardship of privately owned forestlands is the goal of the Forest Stewardship Program. Candidates for the program are those landowners who are both interested in and committed to long term management that is economically viable and socially, ecologically and environmentally responsible.
The Forest Land Enhancement Program (FLEP) is intended to promote sustainable forest management on non-industrial private forest lands by offering educational, technical and financial assistance to private forest landowners.

Cost-sharing in the program is available for a number of activities including: management plan development, reforestation, forest stand improvement, water quality improvement, and watershed protection, fish and wildlife habitat improvement, forest health and protection, invasive species control, and wildfire and catastrophic event rehabilitation.

**Natural Resources Conservation Service**

The Natural Resources Conservation Service (NRCS) works hand-in-hand with the American people to conserve natural resources on private lands. They help land-users and communities approach conservation planning and implementation with an understanding of how natural resources relate to each other and to all of us and how our activities affect these resources. More information of the NRCS can be found at http://www.nrcs.usda.gov/.

**Grassland Reserve Program**

The NRCS, Farm Service Agency and Forest Service coordinate the Grassland Reserve Program (GRP) which is a voluntary program offering landowners the opportunity to protect, restore, and enhance grasslands on their property.

**Wildlife Habitat Incentives Program**

The Wildlife Habitat Incentives Program (WHIP) is a voluntary program for people who want to develop and improve wildlife habitat primarily on private land. NRCS provides both technical assistance and up to 75 percent cost-share assistance to establish and improve fish and wildlife habitat.

**Wetlands Reserve Program**

The Wetlands Reserve Program is a voluntary program offering landowners the opportunity to protect, restore, and enhance wetlands on their property. The NRCS provides technical and financial support to help landowners with their wetland restoration efforts.

Other notable NRCS programs include: the Watershed Protection and Flood Prevention Operations, Conservation Technical Assistance, the Environmental Quality Incentives Program, the Conservation Security Program, and the Resource Conservation and Development Program.

**Michigan Department of Agriculture**

**Conservation Reserve Enhancement Program**

The MDA’s Conservation Reserve Enhancement Program was created to help protect our environment and wildlife. Michigan is partnering with the federal government to implement conservation practices of great significance to the state and value to the nation, in matters of soil erosion, water quality, and wildlife habitat. Information on the program can be obtained through the MDA website at http://www.michigan.gov/mda/.
**Stewardship Network**

The Stewardship Network is a grassroots cooperative organization working to protect, restore, and manage Michigan's natural lands and waters. It helps individuals, organizations, and businesses manage specific sites through sharing ideas, resources, and information. The network’s website is located at http://www.stewardshipnetwork.org/.

**Michigan Conservation Districts**

Michigan’s Conservation Districts (CDs) are “unique” local resource management agencies that coordinate and implement resource and environmental programs utilizing state, federal and private sector resources. The guiding philosophy of the Conservation Districts is that decision on conservation issues should be made at the local level, by local people and interests, with technical assistance provided by the government. The Conservation Districts carry out many diverse programs, including programs that deal with land management, erosion control, flood prevention, water use, groundwater, farms, forestry, wildlife, water quality, recreation, and community development. The Michigan Association of Conservation Districts can be accessed through http://www.macd.org/.

**Macomb Conservation District**

The Macomb CD was established in 1950 with the mission of “ensuring that land, water, forest, and wildlife, and all natural resources of the county are managed for sustained use for future generations”.

**Wayne County Conservation District**

The Wayne County CD was established in 1969 to assist landowners and residents with the conservation and management of the natural resources of Wayne county, including soil, water, air, plants, and wildlife.

**U.S. Fish and Wildlife Services**

The goal of the U.S. Fish and Wildlife Services (FWS) is to conserve, protect, and enhance fish, wildlife, plants, and their habitats. The FWS works with the public and other government agencies to conduct environmental reviews for habitat protection and restoration, environmental contaminants, and federally threatened and endangered species. Their Partners for Fish and Wildlife Program provides assistance to landowners to restore wetlands and native prairies. Through its Coastal Program, the service focuses its efforts in bays, estuaries, and watersheds around the U.S. coastline, including Lake St. Clair. The agency’s website is located at http://www.fws.gov/.

**Federal Interagency Committee for the Management of Noxious and Exotic Weeds**

The committee coordinates information regarding the identification and extent of invasive plants in the U.S. and federal agency management of these species by developing and sharing scientific and technical information, fostering collaborative efforts, providing recommendations for national and regional level management of invasive plants, and sponsoring technical/educational conferences and workshops concerning invasive plants. The committee’s website is located at http://www.fws.gov/ficmnew/.
Geese
In many locations, geese are considered a nuisance and may contribute to water pollution, especially where they congregate in large numbers. There are many options available to control geese populations, including: a MDNR egg replacement program, a MDNR molt migration program (destroying nests to induce migration), and professionally trained border collies.

North American Waterfowl Management Plan
The North American Waterfowl Management Plan is an international action plan to conserve migratory birds throughout the continent. The Plan is a partnership of federal, provincial/state and municipal governments, non-governmental organizations, private companies and many individuals, all working towards achieving better wetland habitat for the benefit of migratory birds, other wetland-associated species and people. The Plan’s unique combination of biology, landscape conservation and partnerships comprise its exemplary conservation legacy. Plan projects are international in scope, but implemented at regional levels. These projects contribute to the protection of habitat and wildlife species across the North American landscape. In fact, the North American Waterfowl Management Plan is considered one of the most successful conservation initiatives in the world. The plan can be accessed on the internet at http://www.nawmp.ab.ca/.

Pheasants Forever
Pheasants Forever is a non-profit conservation organization dedicated to the protection and enhancement of pheasant and other wildlife populations in North America. This mission is carried out through habitat improvement, land management, public awareness, and education. The organization’s website is located at http://www.pheasantsforever.org/.

Ducks Unlimited
The Ducks Unlimited Great Lakes/Atlantic Regional Office, located in Ann Arbor, MI and established in 1998, provides comprehensive conservation solutions to help restore and protect diminishing wetlands in 18 states, from Wisconsin to Virginia and north to Maine. The organization’s website is located at http://www.ducks.org/.

Trout Unlimited
Trout Unlimited’s mission is to conserve, protect and restore North America’s trout and salmon fisheries and their watersheds. Trout Unlimited accomplishes this mission on local, state, and national levels with an extensive and dedicated volunteer network. The organization’s website is located at http://www.tu.org/.

Michigan Audubon Society
Michigan Audubon Society works to foster the appreciation and protection of birds and their habitats through education, research, and conservation/preservation. The organization’s website is located at www.michiganaudubon.org/.

Sierra Club
The Sierra Club is a diverse organization protecting communities and the planet. Their mission statement has four tenets: 1) to explore, enjoy, and protect the wild places of the earth; 2) to practice and promote responsible use of the earth’s ecosystems and resources; 3) to educate and enlist humanity to protect and restore the quality of the natural and human environment; and 4) to use all lawful means to carry out these objectives. The club’s website is accessible at http://www.sierraclub.org/.

Clean Water Action
Clean Water Action is a national citizens’ organization working for clean, safe and affordable water, prevention of health-threatening pollution,
creation of environmentally-safe jobs and businesses, and empowerment of people to make democracy work. The group’s website is located at http://www.cleanwateraction.org/.

**Natural Resources Defense Council**
The Natural Resources Defense Council's (NRDCs) purpose is to safeguard the Earth: its people, its plants and animals and the natural systems on which all life depends. They work to restore the integrity of the elements that sustain life (air, land and water); to defend endangered natural places; to establish sustainability and good stewardship of the Earth as central ethical imperatives of human society; and to protect nature in ways that advance the long-term welfare of present and future generations. The council’s website is available at http://www.nrdc.org/.

**East Michigan Environmental Action Council**
The East Michigan Environmental Action Council (EMEAC) works with a broad variety of stakeholders to solve environmental problems. They help residents address community concerns by providing information, research, and tools for working with local government. They also meet with business and political leaders to find practical alternatives to industrial practices that pollute air and water. The council’s website can be accessed at http://www.emeac.org/.

**Great Lakes Panel on Aquatic Nuisance Species**
Since 1991, the Great Lakes Panel on Aquatic Nuisance Species has worked to prevent and control the occurrence of aquatic nuisance species in the Great Lakes. The Great Lakes Panel on Aquatic Nuisance Species is directed to perform the following tasks:
- Identify Great Lakes priorities;
- Assist / Make recommendations to a national Task Force on Aquatic Nuisance Species;
- Coordinate exotic species program activities in the region;
- Advise public and private interests on control efforts; and
- Submit an annual report to the task force describing prevention, research and control activities in the Great Lakes Basin.

More information on the panel can be obtained at http://www.glc.org/ans/panel.html.

**U.S. Department of Agriculture – Animal and Plant Health Inspection Service**
Among many other functions, the service works with state and local agencies as well as private landowners and managers to eliminate invasive plants on private lands, as well as regulating importation of biological control agents. The service’s website is located at http://www.aphis.usda.gov/.

**Michigan Invasive Plant Council**
The Michigan Invasive Plant Council (MIPC) is a non-profit organization spanning a wide array of groups from governmental agencies, to commercial enterprises, conservation organizations, educational institutions and the gardening public. The council’s website is located at http://forestry.msu.edu/mipc/.

**Michigan’s Aquatic Nuisance Species Council**
The purpose of the Council is to advise the Office of the Great Lakes and the MDEQ, MDNR, MDA, and MDOT on implementation of the Aquatic
Nuisance Species Management Plan, including: the state's efforts to prevent and control aquatic nuisance species' introduction and spread within Michigan; information/education activities about aquatic nuisance species; the coordination of research and monitoring activities pertaining to aquatic nuisance species; and revising and updating Michigan's Aquatic Nuisance Species State Management Plan as necessary.

**Michigan State University Extension**
The Michigan State University Extension focuses on bringing educational programs to the people of the state to improve their lives and communities. Today, county-based staff members, in concert with on-campus faculty members, serve every county with programming focused on agriculture and natural resources; children, youth and families; and community and economic development. The program’s website is located at http://www.msue.msu.edu/home/.

**Michigan Natural Features Inventory**
The goal of the Michigan Natural Features Inventory (MNFI) is "to actively contribute to decisions that impact the conservation of biological and ecological diversity by collecting, analyzing, and communicating information about rare and declining plants and animals, and the array of natural communities and ecosystems native to Michigan." The Inventory’s website can be found at http://web4.msue.msu.edu/mnfi/.

**Clinton River Watershed Council**
The CRWC operates numerous educational and stewardship programs that seek to enhance and natural resources. These include assessments for wetland protection, restorations of water resources, and educational guides.

**The United States Geological Survey**
The United States Geological Survey (USGS) serves as an independent fact-finding agency that collects, monitors, analyzes, and provides scientific data about natural resources. The USGS has no regulatory or management mission. Through its National Water Quality Assessment Program (NAWQA), the USGS is conducting water quality investigations throughout the United States. The survey’s website is located at http://www.usgs.gov/.

**Great Lakes Gap Analysis Program**
The goal of the Great Lakes Aquatic GAP Program is to evaluate the biological diversity of aquatic species and their habitats, and to identify gaps in the distribution and protection of these species and their habitats within the Great Lakes basin. This information will provide managers, planners, scientists, and policy makers with the information they need to identify priority areas for conservation before a species is threatened or endangered.

**Recreation Promotion and Enhancement**
While not generally considered an essential component of watershed protection, recreation-related actions are important for a number of reasons. First, input from the public generally contains references to increased recreation opportunities. Second, recreational access to natural areas serves to foster a stewardship ethic through a greater appreciation of the watershed as a resource.

The following programs can provide assistance with recreation-related issues in the subwatershed.
Clinton River Watershed Council
The CRWC hosts many recreation activities in the watershed, including River Day in which individuals, businesses, community groups, and local governments across the watershed join forces to protect, enhance, and celebrate the Clinton River and Lake St. Clair through activities ranging from nature hikes, canoe trips, fishing derbies, and fly-fishing lessons to storm drain stenciling, river clean-ups, habitat restoration, and native landscaping. The CRWC also acts as a clearinghouse for identifying other recreation facilities and activities within the watershed through their Clinton River Watershed Recreation Guide.

Huron-Clinton Metropark Authority
The Huron-Clinton Metropark Authority is a regional special park district encompassing Wayne, Oakland, Macomb, Washtenaw and Livingston counties. Currently, 13 Metroparks covering almost 24,000 acres, serve about 9.5 million visitors annually. The Metroparks are located along the Huron and Clinton rivers, providing a greenbelt around the Detroit metropolitan area. The authority’s website is available at http://www.metroparks.com/index.php.

Rails-to-Trails Conservancy
The Rails-to-Trails Conservancy is a nationwide organization “creating a nationwide network of trails from former rail lines and connecting corridors to build healthier places for healthier people.” The conservancy’s website can be found at http://www.railstrails.org/.

Michigan Department of Natural Resources
The MDNR regulates many of the recreational activities throughout the state of Michigan including hunting, fishing, boating, and off-road vehicle use. The department also operates numerous state forest lands, campgrounds, parks, recreation areas, harbors, and trails.

State Historic Preservation Office
Historic preservation enhances the quality of our environment and lives. Urban areas find renewal. Small towns retain the character that set them apart from other communities. Cultural landscapes are protected from uncontrolled development. The office’s main function is to provide technical assistance to local communities in their efforts to identify, evaluate, designate, and protect Michigan's historic resources. The State Historic Preservation Office (SHPO) also administers an incentives program that includes state and federal tax credits and pass-through grants available to Certified Local Governments.

Monitoring
This section discusses existing programs that can be leveraged and other protocols that can be utilized to obtain data for measuring success of the WMP.

Existing Programs
The programs listed in this sub-section are currently being implemented by their respective organizations.

County and Municipal Illicit Discharge Elimination Programs
Based on Watershed-based Permit requirements, the county departments and municipal governments are conducting field work to identify illicit
connections to and discharges from the storm sewer infrastructure. A significant portion of this work involves walking waterbodies and sampling outfalls for a number of pollutants. These programs should be kept in mind for leveraging and combining field work and data collection.

**County Health Departments – Surface Water Quality Monitoring**
The Macomb County Health Department (MCHD) conducts a number of monitoring programs that document water quality conditions throughout the subwatershed, including the Lake St. Clair Assessment, Beach Monitoring, Surface Water Testing, and the Lake St. Clair Regional Monitoring Project. Wayne County also has various programs generating water quality data.

**Clinton River Watershed Council - Stream Leaders Program**
Across the watershed, students and teachers are learning about water quality issues and helping protect their community’s water resources by becoming volunteer water quality monitors. They are analyzing water samples for dissolved oxygen, nutrients, pH, temperature, and a host of other chemical constituents; evaluating the health of stream habitats and aquatic biological communities; inventorying physical stream-side conditions and land uses that may affect water quality; cataloging and collecting river, lake and beach debris; restoring degraded habitats; and making community presentations.

**Clinton River Watershed Council - Adopt-A-Stream**
Twice a year, teams visit their adopted sites and collect data, including physical information (such as extent of streambank erosion and surrounding land use) and chemical information (such as water temperature and pH). They collect and identify benthic macroinvertebrates that live in the streambed and surrounding vegetation. Different macroinvertebrates need specific conditions in which to survive and reproduce. Some are very pollution sensitive while others can tolerate highly polluted water. A stream’s health can be determined by the number and types of macroinvertebrates that live in it.

**Public Education Plan Evaluation**
The public education plans (PEPs) for all of the permittees in the subwatershed are currently being implemented (since 2004), including an assessment of the measures of success associated with the PEP actions. The data for these assessments should also be considered with respect to the assessments to be conducted in evaluating and revising this WMP.

**Southeast Michigan Council of Governments – Social and Municipal Surveys**
The Southeast Michigan Council of Governments (SEMCOG) conducted a social survey to establish a baseline level of knowledge among the residents in the region, including the subwatershed. Additionally, SEMCOG conducts surveys with respect to its municipal training and other educational activities. These data, and data from future surveys, can be used in assessing many of the measures of success in this WMP.

**Environmental Protection Agency**
In some cases, the U.S. Environmental Protection Agency (EPA) may be involved in obtaining water quality data. This data may be documented in specific reports and also stored in the agency’s STORET database. This database also contains data provided by outside sources.
Michigan Department of Environmental Quality
The Michigan Department of Environmental Quality (MDEQ) routinely collects data that include water quality, macroinvertebrate sampling, and fish studies. The environmental monitoring program incorporates four main goals, including assessing current conditions of waters of the state, identifying whether water quality standards are being met, measuring water quality trends, evaluating water quality protection and prevention program effectiveness, and recognizing emerging water quality problems. The data collection occurs on a five-year cycle, as depicted in the sidebar figures and Figure 7-2 which depicts Basin Year 2 (2003).

Figure 7-2. MDEQ monitoring basins for Basin Year 2 (2003.)

The five-year rotating basin watershed monitoring activities include fish contamination studies, macroinvertebrate evaluations, water and sediment chemistry studies, and wildlife contamination studies. Information from the studies is summarized and available to the public. For more water quality monitoring program information, see Chapter 3 of this plan or visit the MDEQ web site at www.michigan.gov/deq.

Michigan Department of Natural Resources
The Michigan Department of Natural Resources (MDNR) routinely collects data similar to the MDEQ's but with a greater focus on macroinvertebrates and especially fish studies (including habitat, diversity of fish, abundance of fish, contaminants in fish tissue, and taste and odor tests). A wildlife action plan was generated for Michigan to identify and
The plan gives a greater emphasis on species of greatest conservation needs. Other monitoring and management programs include the fish consumption advisory study, fish identification programs, and amphibian surveys.

**United States Geological Survey**
The United States Geological Survey (USGS) is involved in obtaining stream-flow data and some water quality data. The USGS maintains the National Water Information System that houses and organizes this data for easy access.

**United States Army Corps of Engineers**
The United States Army Corps of Engineers (USACE) conducts sediment and water quality sampling as part of its maintenance dredging program under the Rivers and Harbors Act.

**Other Existing Programs**
Many other existing programs may exist that can provide data to use in assessing the measures of success. Some organizations to consider for the possibility of programs to generate these additional data include the National Oceanic and Atmospheric Administration (NOAA), the International Joint Commission (IJC), and the Great Lakes Commission (GLC).

**Other Protocols**
The protocols listed below are not currently implemented on a regular basis but should be considered as methods to obtain appropriate data for conducting assessments.

**Road-Stream Crossing Surveys**
The stream crossing watershed survey is an approach used to collect information about the quality of a stream. A standard data collection form is used to ensure uniformity throughout the watersheds. The physical habitat of the site including water characteristics, stream characteristics, plant life, foam and trash presence, substrate type, stream morphology, land use, and corridor description are recorded. Also potential sources of pollution upstream and downstream of the site are identified if apparent.

The MDEQ maintains a statewide database and standard protocol set that can easily be implemented. The MDEQ may provide training upon request.

**Stream Assessment**
During this effort the participants walk reaches of a stream looking for and recording issues potentially impacting the waterbody such as outfalls, bank erosion, buffer, channel modifications, trash and debris, and impacts from utilities. Issues such as substrate, water clarity, plant and wildlife, shade cover can also be noted. Some data collected during the assessments overlap with data collected using other methods.

Stream corridor assessments may be conducted as part of a canoe trip on waterways large enough to support canoeing.

This method is similar to the Road-Stream Crossing Surveys but is conducted on entire stretches of stream as opposed to discrete sites where streams and roads cross. Example methodologies include that which is developed by the Center for Watershed Protection (CWP) and outlined in [Unified Stream Assessment](#)

*Source: CWP, 2005.*

**Unified Subwatershed and Site Reconnaissance**

The Unified Subwatershed and Site Reconnaissance (USSR) survey, developed by the CWP (2005), involves conducting quick but thorough characterizations of upland areas. The goal of the USSR is to identify major source types and areas that potentially contribute pollutants to waterbodies. The four major components of this survey include: neighborhood source assessments, hotspot site investigations, pervious area assessments, and street and storm drains assessments.

**Hot Spot Testing**

Parts of the watershed encompass land once and currently used for industrial and commercial purposes. Prior to government regulation, a number of pollutants were released without realizing their potential impacts on public health and safety and water quality in aquatic environments. In addition to this historical pollution, various hot spots of pollution may exist due to accidental release or intentional, illegal releases. Any known or discovered hot spots may be monitored for the applicable pollutants.

**BMP Monitoring**

In order to properly document load reductions (Level Four), monitoring may be done at sites where BMPs are installed both before and after implementation. Alternately, load reductions can be calculated using standard values.

**Wet Weather Discharge Sampling**

Currently, the various IDEP programs are responsible for monitoring dry weather discharges from the storm sewer systems. However, to properly document changes in water quality discharged from the storm sewer systems (Level Five), sampling will need to be done during wet weather conditions.

**Additional Methodologies**

Additional methodologies may be required to properly assess the effectiveness of this plan. Possibilities for these include assessments of: the R-B flashiness index; the extent of channelization; the level of imperviousness; open space; development in the floodplain; basement flooding, CSOs, and/or SSOs; the status of the designated and/or beneficial uses for waterbodies; groundwater conditions; septic system distribution and performance; and beach closings.

**Water Quality Index**

Many different analytical chemistry tests may be performed to determine the quality of surface water. The tests may be considered individually or combined together in an index. An example of one such index was created and designed by the National Sanitation Foundation (NSF) in 1970 called the Water Quality Index (WQI). The purpose of the index is to measure water quality changes in a particular river reach over time and provide a means to compare results with different reaches of the same river or other rivers. The WQI includes testing the water for dissolved oxygen, fecal coliform, pH, biochemical oxygen demand (BOD), temperature, total phosphate, nitrates, turbidity, and total solids. The nine resulting values are then added, with weighting factors, to arrive at an overall water quality index (Mitchell, 2000).
Summary

As the ‘Current Subwatershed Protection Practices’ section of Chapter 3 detailed, the level of aquatic resource protection in the subwatershed is less than optimal. This chapter detailed many actions that can be taken towards improving aquatic resource protection and achieving the goals and objectives presented in Chapter 6. Also included were actions for meeting natural feature protection / restoration and recreational goals and objectives.

When determining the specific actions to implement, each entity represented by the plan can reference “Opportunities for Water Resource Protection in Local Plans, Ordinances, and Programs” (SEMCOG, 2002) to help determine deficiencies and suggested improvements in the following categories:

- Storm Water Management Standards;
- Engineered Best Management Practices;
- Infiltration Practices;
- Impervious Surface Reduction, including:
  - Parking Lots and Streets; and
  - Lot Setbacks, Widths, and Coverage;
- Land Conservation and Development Techniques, including:
  - Open Space and Parks Acquisition;
  - Conservation Easements and Similar Tools;
  - Urbanized Community Activities;
  - Rural Community Activities; and
  - Clustering and Open Space Development;
- Soil Erosion and Sediment Control;
- Sanitary Sewer Planning and Infrastructure, including:
  - Septic Systems; and
  - Illicit Discharge Elimination;
- Groundwater Protection;
- Green Infrastructure;
- Natural Area Preservation and Restoration, including:
  - Habitat;
  - Native Plant Species;
  - Wetland Protection;
  - Woodlands Preservation; and
  - Stream Corridors and Floodplains;
- Capital Improvement Plan;
- Watershed-based Activities;
- Public Education;
- Pollution Prevention / Good Housekeeping; and

The list of actions that will be implemented is presented in Chapter 8. The selection of the actions was done in an adaptive management setting based in part on the information presented in this chapter.

Other Resources

A vast number of other resources may be utilized or consulted in implementing watershed protection, including:

- The Michigan Department of Community Health;
- The United States Forest Service;
- Other Department of the Interior Agencies (in addition to the previously mentioned Fish and Wildlife Service and USGS);
- World Wildlife Fund;
- Wildlife Habitat Council;
- The Conservation Fund;
- The National Wildlife Federation;
- United States Army Corps of Engineers;
- United States Coast Guard;
- United States Department of Homeland Security; and
- United States Department of Transportation.
References


Macomb County Department of Planning and Economic Development [MCPED], “Macomb County Promotes Use of Environmental Ordinances to Assist Local Governments with EPA Regulations & Smart Growth Opportunities”. News Release, 2005.


Michigan Association of Planning [MAP], *Community Planning Handbook: Tools and Techniques for Guiding Community Change*


Pictures

http://www.dakotacountyswcd.org/liddemo.htm

http://www.dakotacountyswcd.org/images/lid/P1010008.jpg


Subwatershed Photo Tour: Grosse Pointe Farms Water Filtration Plant

Photo courtesy of MCPWO.
8. Implementation Roadmap

Introduction

This chapter of the Watershed Management Plan (WMP) details the steps to achieve the goals and objectives for the subwatershed (see Chapter 6). Simply, it is a roadmap to guide implementation of these steps or actions. To facilitate their presentation, the actions have been grouped into the categories used in Chapter 7 (except that ‘Stormwater Best Management Practices’ has been broken down into two categories – see 5 and 6 below; and ‘Monitoring’ is discussed in Chapter 9):

1. Watershed Planning, Institutionalization, and Implementation;
2. Public Education and Participation;
3. Ordinances, Zoning, and Development Standards;
4. Good Housekeeping and Pollution Prevention;
7. Natural Features and Resources Management; and
8. Recreation Promotion and Enhancement.

In order to meet the goals and objectives of the plan, the Subwatershed Advisory Group (SWAG) developed a reasonable schedule that is based on numerous factors including: water quality improvement potential, cost, and projected implementation time. This general schedule is presented in Figure 8-1 on an ‘action category’ basis. The markers in the timeline (◆) denote implementation milestones (note that not all actions have milestones associated with them). These milestones are introduced in Figure 8-2. Details for each milestone are discussed further in Chapter 9.

Figure 8-1. General schedule.

<table>
<thead>
<tr>
<th>Short Term</th>
<th>Long Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
</tr>
<tr>
<td>1. Watershed Planning, Institutionalization, and Implementation</td>
<td>◆◆◆◆◆</td>
</tr>
<tr>
<td>2. Public Education and Participation</td>
<td>◆◆◆</td>
</tr>
<tr>
<td>3. Ordinances, Zoning, and Development Standards</td>
<td>◆◆◆</td>
</tr>
<tr>
<td>4. Good Housekeeping and Pollution Prevention</td>
<td>◆◆◆</td>
</tr>
<tr>
<td>7. Natural Features and Resources Management</td>
<td>◆◆</td>
</tr>
<tr>
<td>8. Recreation Promotion and Enhancement</td>
<td>◆</td>
</tr>
</tbody>
</table>

Quotable Quotation

“Anything else you’re interested in is not going to happen if you can’t breathe the air and drink the water.
Don’t sit this one out.
Do something.
You are … alive at an absolutely critical moment in the history of our planet.”

- Carl Sagan
Figure 8-2. Implementation milestones.

<table>
<thead>
<tr>
<th>Action Category</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2009: Update WMP</td>
<td>Reconvene SWAG Implementation Clearinghouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pollutant Source Identification</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public Involvement</td>
<td></td>
<td></td>
<td>Demonstration Projects</td>
</tr>
<tr>
<td></td>
<td>Public Meetings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Municipal Officials Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actions to Remediate Contaminated Sediments</td>
<td>Development Management Preserve Natural Features</td>
<td>Pollution from Roads / Lots (2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spill Prevention / Notification / Response</td>
<td></td>
<td>Waste Management Animal Waste Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sanitary / Combined Sewer Planning and Maintainance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flood Control Projects</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Septic System Practices</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marine Industry Activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bare Soil Repair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Infiltration Techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Filtration Techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vegetative Buffers and Natural Conveyance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Retention and Detention</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Feature Protection</td>
<td>Riparian Parks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Feature Restoration</td>
<td>Access Sites</td>
<td></td>
</tr>
<tr>
<td>7. Natural Features and Resources Management</td>
<td></td>
<td></td>
<td>Fishing Opportunities</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trails / Decks</td>
<td></td>
</tr>
<tr>
<td>8. Recreation Promotion and Enhancement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Implementation Roadmap  
Lake St. Clair Direct Drainage Subwatershed  
10/31/2006
Actions to Achieve Goals and Objectives

This section discusses the individual actions that will be taken to meet the goals and objectives of this plan. As discussed in Chapter 1, this plan was developed to meet the requirements of the National Pollutant Discharge Elimination System (NPDES) Phase II program and General Permit No. MIG619000 (or ‘Watershed-based Permit’) but also to meet the requirements of a number of funding programs (see Chapter 1). As such, not all of the actions detailed in this chapter are required actions.

Requirements of the Phase II program derive mainly from the ‘Watershed-based Permit’ language and include actions related to a Public Education Plan (PEP), an Illicit Discharge Elimination Plan (IDEP), development of a WMP containing actions (with permittee commitments) needed to achieve the goals and objectives and evaluation methods, and submittal of Storm Water Pollution Prevention Initiatives (SWPPIs) that contain other specific actions.

Additionally, the Michigan Department of Environmental Quality (MDEQ) has issued Certificates of Coverage (COCs) that indicate dates by which PEPs, IDEPs, WMPs and updates, SWPPIs and updates, and Annual Reports must be submitted.

In order to provide the most robust plan possible, this WMP contains references to most of the aforementioned elements. To distinguish which actions are required and commutable actions of this WMP, consider that:

1) The PEPs and IDEPs have been submitted and are being implemented as of submittal of this WMP. As such, the communities neither modify their existing plans nor commit to additional actions through this WMP, but simply include these as actions in the plan for reference and potential funding above and beyond the existing actions being taken in compliance with the PEPs and IDEPs. Some communities may choose to include PEP and IDEP actions in their SWPPIs;

2) The ‘other specific actions’ to be included in the SWPPI have been defined as actions in the plan to reduce confusion; and

3) Submittal of the WMP-updates, SWPPIs and updates, and Annual Reports are not SWPPI reportable commitments.

To further clarify the issue, the text in the following sub-sections which gives the details of each action, is abutted by an outlined box that defines which actions are Phase II requirements with supporting discussion.

The bracketed text following each item indicates its short name used in some tables in the plan.

The permittees feel that some elements of even the Phase II required actions may be fundable through various grant programs. For example, the permittees feel that the development of products or programs which are utilized by non-permittee Subwatershed Advisory Group (SWAG) members represented by the WMP, or other non-permittees outside of the subwatershed, can be grant funded, but it is the application of the products or implementation of the program that is the Phase II component.
1 Watershed Planning, Institutionalization, and Implementation

These actions consist of those that are meant to foster the cooperative watershed planning and decision-making approach in both the short and long term between all levels of government and local stakeholders. The benefit of these actions is the funding, implementation, and long-term institutionalization of the WMP.

When feasible and appropriate the Subwatershed Advisory Group (SWAG) will attempt to coordinate planning efforts with the groups representing other watersheds and subwatersheds in Southeast Michigan. The focus of coordinating planning efforts can be to consolidate goals and objectives and coordinate actions being taken such that implementation and achievement is streamlined, especially for SWAG members represented in multiple WMPs (e.g. Clinton Township, which is in the LSCW and Anchor Bay subwatersheds of the Lake Drainage Watershed, and in the Clinton River East, Red Run, and North Branch subwatersheds of the Clinton River Watershed).

When feasible and appropriate, the SWAG and its members will utilize planning tools such as Geographic Information Systems (GIS), the Integrated Coastal Management (ICM) tool, the Potential Conservation Area Analysis (GLC, 2004), and those developed through the Clinton River Watershed Initiative (CRWI) – including a hydrological model of the watershed – to guide action implementation and other management decisions with the most up-to-date information and analytical processes.

1-1 Promote and Reconvene Subwatershed Advisory Group [SWAG]

During the four years following submittal of this plan, the SWAG will document the progress of implementing the WMP under the current voluntary and informal organizational structure (see Chapter 9) and will take actions to promote visibility of and encourage increased participation in the SWAG.

Encouraging visibility and increasing participation may include regular e-mail communication with the member entities about the mission and purpose of the SWAG, current news, status of activities, a schedule for upcoming activities, and benefits of membership and may include communication with other interested entities (including business and citizen groups), formal means of communication such as a newsletter, and attendance at relevant meetings.

Also during this time, the SWAG will research alternative methods for long-term WMP implementation (as presented in Chapter 10). At the end of this four year period, the SWAG will reconvene for long-term WMP implementation (which may simply be continuing with the current organizational structure), continuing its visibility and participation activities.

Planning Levels

Watershed planning occurs on many levels. This is one of many subwatershed plans being prepared throughout the watershed, region, and state. Planning for the entire watershed is occurring through the Remedial Action Plan (RAP) process and cooperation with the Clinton River Watershed Council. Some planning has also occurred for the entire Lake St. Clair Sub-basin.

Benefits of the Actions

The benefits of the actions are given on a category basis. The introductory text for each subsection discussing an action category has italicized text that highlights the benefits of that group of actions.

Voluntary Action – dependent on funding
1-2 Evaluation and Revision Procedure [ERG]

In the year following submittal of the WMP (and its subsequent updates), the SWAG will develop an ‘Evaluation and Revision Procedure’ (ERG) to guide future updates to this WMP (see Action 1-6). The ERG will provide the context for measuring action completion, product and facility usage, and behavioral and pollution-level changes associated with WMP implementation. The ERG will define:

- Monitoring protocols (locations, data, parameters, etc) based on information presented in the WMP;
- Achievement levels to help gauge success;
- Data reporting/submittal requirements, both audience (international, national, state, regional, and local governments, and the public) as well as mechanism (website, etc);
- Triggers to initiate the evaluation and revision procedure (including the WMP update schedule); and
- Steps to take to complete the evaluation and revision procedure.

The ERG will be based largely on the information presented in Chapter 9, but will be developed in consideration of any conditions that have changed since the plan was submitted.

1-3 Develop Funding Program [Funding]

The SWAG will develop a ‘Funding Program’ that identifies anticipated budget needs and funding sources to help implement the WMP. The Funding Program will define:

- Funding sources for all actions in the plan (including contaminated sediment remediation – which is not technically addressed in the plan, but will benefit the SWAG);
- Funding sources at all appropriate levels (international, federal, state, regional, local, private sector, etc.);
- Program dates, eligibility requirements, and funding levels;
- Advantages and disadvantages of the funding sources,
- Steps to take to procure identified funding; and
- Actions to take with respect to establishing a stormwater utility (e.g. supporting legislation).

The Funding Program will be based largely on Table 8-2, which identifies estimated costs and hours associated with each action, and Tables 8-4 and 8-5, which expand on Table 8-2 to identify potential sources of financial and technical assistance. Chapter 7 may also help identify some valuable resources for action implementation.

The Funding Program should be updated annually such that up-to-date information on grant availability and funding levels is readily available to SWAG members.

Phase II Requirement
The evaluation mechanisms defined in Chapter 9 (that will be included in the ERG) meet the ‘Watershed-based Permit’ requirement for the WMP to contain methods for evaluation of progress.

Voluntary Action – dependent on funding

Importance of the Funding Program

The Funding Program (Action 1-3) is a vastly important mechanism for defining how the WMP-participants will implement the actions defined in this plan. Although not specifically mentioned in the narrative on these pages, referencing the Funding Program to identify potential funding sources is a task that will be required to successfully implement most of the actions in the WMP.
1-4 Develop Grant Proposals [Grants]
Grant proposals will be developed and submitted as available and as determined by the SWAG members, utilizing the Funding Program to save time and effort. When feasible, SWAG members will work together to share funding on an action-by-action basis.

1-5 Update SWPPI [Update SWPPI]
Following the submittal of this WMP in 2006, the SWAG will coordinate the revision of the Phase II Permittees’ Storm Water Pollution Prevention Initiatives (SWPPIs) or Abbreviated SWPPIs which were submitted on or before November 1, 2005. This coordination may be, in part, in the form of guidance or a template which is developed based on the contents of this plan. The end result of this action will be for every Phase II Permittee to have developed a revised or first full SWPPI (no longer ‘Abbreviated’), based in part on information provided to them by the SWAG, and submit it to the MDEQ by May 1, 2007.

Following the submittal of the updated WMP in 2008, the SWAG will assist with the revision of the Phase II Permittees’ SWPPIs which were submitted on or before May 1, 2007. This assistance may be, in part, in the form of guidance or a template which is developed based on the contents of the updated plan. The end result of this action will be for every Phase II Permittee to have developed a revised SWPPI, based in part on information provided to them by the SWAG, and submit it to the MDEQ by May 1, 2009.

1-6 Update WMP [Update WMP]
During the second year following submittal of this plan, the SWAG will update this plan in accordance with the ERG (Action 1-2) or prepare a written determination not to update the plan and submit it to MDEQ on or before November 1, 2008.

The plan updates will then continue based on the schedule spelled out by the MDEQ in the reissued Certificates of Coverage under the Watershed-based Permit, expected to be every two to five years.

1-7 Annual Reports [Annual Reports]
Annually, each Phase II Permittee is required to submit an ‘Annual Report’ by the date specified in their respective Certificate of Coverage. The report should document all of the decisions, actions, and results performed as part of the Phase II program during the previous year, including: IDEP, PEP, New Point Source Discharges of Stormwater, SWPPI, Other Actions, Nested Drainage System Agreements, and Special Reporting Requirements. Specifics for each category can be found in the Watershed-based Permit text.

The SWAG will coordinate the Annual Reports by providing guidance or a template to each Phase II Permittee and providing necessary information related to actions that have been implemented (see Action 1-2 - the ERP).
1-8 Total Maximum Daily Loads [TMDLs]
When a lake or stream does not meet Water Quality Standards (WQS), a study is led by the MDEQ to determine the amount of a pollutant that can be put in a waterbody from point sources and nonpoint sources and still meet WQS. The result of this study is termed a ‘Total Maximum Daily Load’ (TMDL) and describes how much of a pollutant a lake or stream can assimilate. The SWAG will support the implementation of TMDLs affecting the subwatershed through modifications to the WMP.

The list of scheduled TMDLs for the subwatershed includes:
- 2007 – Memorial Beach on Lake St. Clair for pathogens (CSOs);
- 2011 – Milk River for pathogens (CSOs), dissolved oxygen WQS exceedances, phosphorus enrichments, and for fish kills;
- 2012 – Lake St. Clair for a fish consumption advisory for PCBS and for the presence of mercury in fish tissue; and
- 2016 – Pier Park Beach on Lake St. Clair for pathogens (CSOs).

The purpose of this action is to ensure that future TMDLs are incorporated to the plan by updating the contents including problems and concerns, goal language, opportunities, and actions.

1-9 Implementation Clearinghouse [Clearinghouse]
In order to efficiently track the implementation of the WMP, to support its evaluation and revision (Action 1-2), and to coordinate the reporting of the Phase II Permittees (Actions 1-5, 1-7, and 1-8), the SWAG will track all programs and activities related to implementation of the WMP.

All SWAG members implementing WMP actions will be responsible for reporting their activities to the SWAG on a quarterly basis, including survey results. The SWAG will log the reported information in accordance with the ERP (Action 1-2). The SWAG may also check with non-SWAG entities to document if any related actions have been implemented.

The SWAG will explore the possibility of using an interactive website where this information can be submitted/retrieved.

1-10 Identify Sources of Pollutants [Sources]
An integral part of watershed management planning is documenting pollutant sources. This information will form the basis for the implementation of most of the actions of this WMP.

The SWAG will base the identification primarily on the contents of this WMP. The pollutant source identification should also consider studies conducted after this plan is submitted and additional focused work including stakeholder surveys, additional field assessments, and reports from field crews (for which reporting protocols may be developed and adopted). Focus should also be placed on distinguishing wet weather and dry weather sources and their relative contributions.

Voluntary Action – dependent on funding

Pollutant Sources
Consideration should be given to researching new generation pesticides, pharmaceuticals, endocrine disrupters, and other chemicals. Their potential for affecting the subwatershed should be considered.
2 Public Education and Participation

As alluded to in the beginning of this section, public education is a Phase II requirement (based on language of the Watershed-based Permit) and is addressed through each permittee’s PEP. Each PEP lays out the approach for informing the public about their role in protecting water quality and preventing stormwater pollution. These PEPs were created with the input of resident, stakeholders, and professionals in the environmental education field, were submitted on May 1, 2004, and are currently being implemented.

However, in seeking to broaden public education activities, include public participation concerns, and leverage potential funding opportunities, the SWAG has included additional actions in this WMP. Again, as the beginning of this section explained, the permittees do not intend these actions to modify their existing PEPs nor commit them to additional actions (under the Phase II program).

In general, the SWAG will rely on the materials and messages of existing educational programs, such as the Clinton River Watershed Council (CRWC), the Southeast Michigan Council of Governments (SEMCOG) or the state, to educate and engage the public.

The text in the following subsections describes actions to be taken in the public education and participation realm. The benefit of these actions is the increase in public and municipal staff knowledge and awareness to facilitate the paradigm shift needed to change adverse behavior affecting the watershed.

2-1 Public Education Plan Implementation [PEP]

The PEPs contain numerous actions that are currently being implemented by SWAG entities. Most of this implementation is contracted with the CRWC or provided by SEMCOG (in support of its member communities), but some entities are engaged in their own or additional implementation. Many of these actions support the goals and objectives of this WMP and, as such, this action is included for reference.

The general components of the PEPs are listed in Chapter 4. A brief summary of these components includes:

- Community Education – consisting of watershed stewardship, stormwater system knowledge, illicit discharge program, personal actions impacting water quality, waste management / dumping, and riparian land management; and
- Youth Education – consisting of the community education components repackaged for students, other programs, experiments and activities, and lesson plans / info for teachers.

The limited summary given above is not comprehensive. Some of the permittees may include components of the following actions in their PEP.
2-2 **Additional Public Education [Public Ed.]**  
Additional activities and messages not included in an individual PEP may be considered for implementation by the SWAG or its constituent members. Where not part of an implementing entity’s PEP, these actions may be eligible for grant funding:

- Additional Community Education – such as habitat conservation and restoration, native and invasive wildlife management, dissemination of planning and water quality information, registered watercraft owner information, recreation education, and a rain garden awareness program; and

- Business Education – including how facilities and operations affect stormwater, pollution prevention activities to minimize this potential, environmentally-friendly construction, new ordinance details, and environmental audit assistance.

2-3 **Municipal Employee Training [Municipal Train.]**  
Municipal employee training refers to keeping staff, both in-house and contracted, aware of how their actions affect stormwater. While many different departments affect stormwater in some way, a key department is the maintenance department. Maintenance staff maintain fleet vehicles, store chemicals, sweep streets, clean catch basins, conduct lawn care, maintain dumpsters, dispose of solid waste, and de-ice the roads. If not done correctly or regularly, these activities can have an adverse affect on stormwater.

Each permittee will ensure the appropriate amount of training is attained by each staff member with the potential to directly impact stormwater runoff. Mainly, this training will be provided by SWAG entities other than the individual communities, such as SEMCOG or county-level governments.

2-4 **Demonstration Projects [Demos]**  
Supporting demonstration projects for stormwater management at new developments or redevelopments will help the community, including municipal officials, developers, planners, residents, and businesses, understand how stormwater management techniques can be incorporated into the community. Developers may be more open to non-traditional techniques if they see that the techniques are successful or other incentives are provided. Demonstration projects will be chosen based on their minimization of impact to the environment, visibility, innovation, coordination with developer, and cost. Examples of demonstration projects include green roofs, pervious pavement parking lots, zero discharge development, residential rain gardens, and cluster development. Developers should be approached early in the project planning phase to incorporate low impact design techniques.
2-5 Signage [Signage]
Educational signage refers to educating the public about specific issues through the use of signs placed strategically throughout the subwatershed. Examples of possible sign uses include:

- to mark watershed boundaries;
- to mark wellhead protection boundaries;
- to point out tips and directives at recreation areas such as “No Dumping” or “Don’t Feed the Geese”;
- to indicate times, at beaches, when it may not be safe to participate in water-based activities due to the presence of pathogens may reduce the risk of sickness; and
- to provide water quality, vegetation, and wildlife protection tips at boat launches.

2-6 Public Involvement [Involvement]
WMP-participant support of volunteer-based watershed programs helps increase the public’s involvement and subsequent awareness of watershed issues. Examples of public involvement programs that the SWAG may initiate or leverage to foster watershed stewardship and disseminate public education materials include adopt-a-road, adopt-a-river, children’s water festival, water reuse rally, community focus/planning groups, storm drain marking/door hanger programs, clean-up days, and data collection (water quality, frog and toads, benthic macroinvertebrates).

Voluntary Action – dependent on funding – unless included in PEP

Watershed Sign

Voluntary Action – dependent on funding – unless included in PEP
2-7 **Community Forums and Stakeholder Workshops [Meetings]**
Community forums and stakeholder workshops provide a means to mold the ever-evolving WMP. It is critical to have community input in order for the watershed to work together as a whole toward the common goal of protecting and restoring the watershed. Public forums and stakeholder workshops were held to develop this WMP and may continue to be held periodically to keep the public informed and involved. Forums and workshops may include a report on progress made towards achieving the goals and objectives of the plan.

2-8 **Municipal Officials’ Involvement and Education [Officials]**
Involving and educating municipal officials (mayors, city/village councils, township trustees, department heads, zoning boards, planning commissions, etc.) on the existence, reason for, and contents of the WMP is essential to successful implementation of many of the actions.

Municipal officials may become involved by participating in workshops, demonstration projects, and public speaking engagements on community stormwater issues. Information can also be passed on to officials through letters, informational packets, and meetings. Educational topics may include:

- best management practices and standards that can be used to promote sustainability in the community and reduce point and nonpoint source pollution;
- model ordinances and information on existing programs that provide technical and cost-share assistance; and
- techniques for reviewing each development project for water quality impacts and a fair mechanism for rejecting those that would adversely affect water quality (e.g. violate water quality standards); and
- stormwater-related and other curricula to get feedback on adopting a standard curriculum into the school districts.
3 Ordinances, Zoning, and Development Standards

These actions consist of those that require administrative measures by the implementing agency and potentially a program supporting implementation. The benefit of these actions is an improvement in surface water and groundwater quality through the prevention or minimization of the effects of urbanization or other pollutant sources.

The Phase II Permittees are required to implement some combination of elements because the Watershed-based Permit requires:

“The development, implementation, and enforcement of a comprehensive stormwater management program for post-construction controls for areas of new development and significant redevelopment. The goal is to protect the designated uses in the receiving water from the effects commonly associated with urbanization.

The permittee shall evaluate and implement site appropriate, cost-effective structural and nonstructural BMPs that prevent or minimize the impacts on water quality. Common controls for urbanization include: policies and ordinances to direct growth to identified areas, to limit the rate and volume of stormwater discharged to pre-development hydrologic levels, to protect sensitive areas such as wetlands and riparian areas, and to maintain or increase open spaces; encouraging infill development in higher density urban areas and areas with existing infrastructure; establishing in-stream maximum flow targets designed to minimize streambank erosion and maintain healthy aquatic populations; and coordinating release volumes and rates from detention basins to achieve in-stream maximum flow targets.”

The implementation of these actions, including development of ordinances, zoning changes, and development standards, will be coordinated with appropriate stakeholders, such as the Michigan Townships Association (MTA), planners, developers and homebuilders, and realtors to find incentives for developers to implement non-traditional stormwater management techniques. This coordination may be in the form of a roundtable discussion.

Implementing the following actions may include the development of design manuals containing:

- standards;
- inspection requirements;
- maintenance requirements;
- pollutant removal efficiencies for the different practices that developers can consider for to meet stormwater standards;
- site layout requirements; and
- natural features protection.

Recommended Implementation Approach

MDEQ personnel have indicated that they would like to see the appropriate entities in the subwatershed begin implementation of the actions in this category by conducting an internal review of programs and ordinances within two years of submitting this plan. The focus of the review should be to determine which ordinances support the actions in this category and what new ordinances or changes to existing ordinances are necessary to successfully implement these actions.
3-1  **Stormwater Management Standards [Standards]**

Because of the varying characteristics of the permittees in the subwatershed, they require a wide range of options to meet this Phase II requirement. Options that may be considered include:

- **Discharge Limitations:**
  - Of pollutant levels in runoff water (i.e. suspended solids, phosphorus, pathogens); and
  - Of peak flow rates and total runoff volume (i.e. limiting to pre-development levels);

- **Infiltration Requirements:**
  - Of total volume or percentage of site;

- **Impervious Surface Limitations:**
  - Of overall site imperviousness (i.e. road widths, cul-de-sacs, parking lots); and
  - Of directly connected impervious areas;

- **Natural Drainage Patterns:**
  - Through minimization of site disturbance to retain natural topography;
  - Through restricting slopes to encourage sheet flow; &
  - Through preserving or reintroducing open channel conveyance with natural channel shapes and meanders.

This action is meant to allow both prescriptive and non-prescriptive approaches in combination. For example, some situations may require certain BMPs while others may require any combination of BMPs to achieve certain targets or limitations.

3-2  **Managing Development Patterns [Development]**

Because of the varying characteristics of the permittees in the subwatershed, they require a wide range of options to meet this Phase II requirement. Options that may be considered include:

- encouraging infill and redevelopment (i.e. relaxing frontage and setback requirements);
- encouraging open space in development and redevelopment projects;
- implementing a site plan and review process;
- incorporating above and other measures into existing land use / master plans and zoning; and
- developing these if they don’t currently exist.
3-3 Preserve Natural Areas / Features [Natural Features]
Because of the varying features of the permittees in the subwatershed, this action, or components thereof, may not be applicable. However, there are a wide range of features to protect and many considerations to make for their protection.

Features to be protected may include: wetlands, waterbodies, riparian areas, headwater areas, groundwater recharge areas, forested areas, and habitat areas.

Measures for their protection may include:
- no net loss policies;
- restricting alteration of these areas (e.g. limiting road crossings);
- restricting disruptive or soil disturbing uses in or near protected areas;
- encouraging their connection to adjacent natural and undeveloped areas; and
- setback ordinances restricting development and significant maintenance from occurring within a specified buffer zone.

Stronger measures will specifically reference those known existing areas and features in need of protection and identify opportunities for including features in large-scale green infrastructure systems. Consideration should be given for the use of some of these areas as passive parks to increase support for action.

Other types of legal-based mechanisms the SWAG may be pursuing are those to prevent pollution from activities as opposed to land types.

3-4 Pollution Prevention Ordinances / Programs [Prevention]
Generally, these are not Phase II requirements. However, permittees may opt to use this action to support Phase II actions listed under Action Category 4 ‘Good Housekeeping and Pollution Prevention’. As such, some permittees may construe implementation of mechanisms under this action as components of, or in lieu of, some Action Category 4 Phase II requirements.

Ordinances or programs that may be considered include:
- Requirements for the maintenance and disposal of wastes from private stormwater infrastructure;
- Requirements for private pavement (e.g. roads, lots) cleaning methods, cleaning schedules, and the disposal of wastes;
- Requirements for the restriction of phosphorus in fertilizers and the proper use of pesticides, herbicides, and fertilizers, including proper disposal of excess product;
- Requirements for waste management at vehicle service stations;
- Requirements for materials storage, spill prevention, and cleanup;
- Requirements for the use and maintenance of dumpsters;
- Requirements for proper solid waste management, including prohibitions against illegal dumping;
- Requirements for proper yard waste disposal; and
- Requirements for septic systems, including: site standards (e.g. exclusion areas, lot size requirements, setbacks), performance standards, point-of-sale inspections, and annual licensing based on proof of inspection.

Strong ordinances and programs will also address enforcement of the requirements.
4 Good Housekeeping and Pollution Prevention\textsuperscript{1}

These actions consist of those that the SWAG members may take with respect to their facilities and encourage with respect to their employees, citizens, and other stakeholders. The purpose of good housekeeping and pollution prevention is to reduce the generation of pollutants and prevent those that have been generated from reaching environmentally sensitive areas, including waterbodies. The benefit of good housekeeping and pollution prevention is the improvement of surface water and groundwater quality by minimizing the impacts of pollution generating activities.

Some of these actions are Phase II requirements as the Watershed-based Permit requires:

“\textquote{The submission of the SWPPI (Stormwater Pollution Prevention Initiative) shall, at a minimum, include...the evaluation and implementation of pollution prevention and good housekeeping activities, as appropriate. This item shall include a training and inspection program for staff and contractors employed by the permittee in activities that may affect stormwater runoff. The permittee shall include the following activities for inclusion in the SWPPI, or explain why the activities do not apply: maintenance activities, maintenance schedules, and inspection procedures for stormwater structural controls to reduce pollutants (including floatables) in discharges from the permittee’s separate stormwater drainage system; controls for reducing or eliminating the discharges of pollutants from streets, roads, highways, parking lots, and maintenance garages; procedures for the proper disposal of operation and maintenance waste from the separate stormwater drainage system (dredge spoil, accumulated sediments, floatables, and other debris); ways to ensure that flood management projects assess the impacts on the water quality of the receiving waters and, whenever possible, examine water quantity structures for incorporation of additional water quality protection devices or practices; and implementation of controls to reduce the discharge of pollutants related to application of pesticides, herbicides, and fertilizers applied in the permittee’s regulated area.}”

\textsuperscript{1} The definition of pollution prevention used in this plan is that which is used in the Watershed-based Permit language. Other programs utilize different definitions and this is important to consider, especially when applying for pollution prevention grants.
4-1 **Identify Sources of Sediment Contaminants [Sed. Sources]**

An objective of this WMP is to select and implement pollution prevention activities for current and future sources of sediment contamination. This action embodies the first step in that process: identifying the sources. To accomplish this, the SWAG may take the following steps:

- Reference the WMP and additional sources to identify all sediment contaminants present in the subwatershed;
- Review the WMP, scientific literature, a survey of stakeholders, and visual assessments to generate a list of sources and their respective locations, including Part 201 sites and ‘Superfund’ sites; and
- Generate a document, and/or database, that summarize this information. These may feed into the decision-making process for implementing the remaining pollution prevention and good housekeeping actions (4-2 through 4-15) such that the current and future sources of sediment contamination are considered.

4-2 **Identify Actions to Remediate Contaminated Sediments [Remediation]**

Where sediment contamination exists, it is desired to identify clean-up opportunities that are cost effective and non-threatening to the environment (in terms of contaminant re-suspension). Building on the identification of sediment contaminants performed in Action 4-1, research may be conducted to identify existing and emerging technologies to remediate the sediment. This information will be provided to SWAG members, along with identified funding opportunities (see the Funding Program – Action 1-3), for them to explore the possibility of implementing remediation activities and obtaining funding for such (as the actual implementation of such activities is outside of the scope of this plan).

4-3 **Storm Sewer System Maintenance and Operations [Storm Sewer]**

Committing permittees will define procedures to ensure that inspection, maintenance, and cleaning of the storm sewer system are done in such a manner that pollutant discharges from the system are minimized. Additionally, the procedures will include provisions for the proper disposal of wastes generated from these activities.

The procedures may include:

- implementation of an optimized catch basin and BMP cleaning schedule;
- a program that disconnects any downspouts which are directly connected to the storm sewer system and reroutes them to discharge onto pervious or vegetated areas;
- an asset inventory to ensure that all infrastructure is accounted for and documented; and
- a labeling program for the storm sewer infrastructure to ensure accurate field work and cross-referencing with an asset management database.
4-4 Minimizing Pollution from Roads and Lots [Roads / Lots]
Committing permittees will define procedures to ensure that the discharges of pollutants from streets, roads, highways, and parking lots are minimized.
The procedures may include:
- proper design, construction, maintenance, and reconstruction of roads, utilities, and their waterbody crossings (including proper materials handling/disposal);
- an optimized street and parking lot sweeping schedule;
- an optimized street and parking lot sweeping protocol (e.g. wet instead of dry to minimize wind transport);
- an optimized pavement de-icing protocol;
- an optimized fire hydrant flushing protocol; and
- consideration of structural BMPs, as necessary.

4-5 Minimizing Pollution from Municipal Facilities [Garages]
Committing permittees will define procedures to ensure that the discharge of pollutants from maintenance garages is minimized.
The procedures may include:
- vehicle fleet management requirements (e.g. purchasing requirements, non-polluting service areas, washing vehicles in proper locations);
- materials storage and spill prevention requirements; and
- consideration of structural BMPs, as necessary.

4-6 Turf Management Practices [Turf Practices]
Committing permittees will define procedures to ensure that the discharge of pollutants such as pesticides, herbicides, and fertilizers from turf areas is minimized.
The procedures may include:
- restrictions on the types and amount of fertilizers, pesticides, and herbicides that can be used;
- proper training and certification for pesticide applicators;
- optimum watering protocols;
- optimum mowing protocols; and
- standards and incentives to accelerate the planting of trees on both public and private lands.

4-7 Waste Management [Waste]
One component of waste management is managing solid waste. SWAG members may choose to implement new or augment existing programs, including:
- A recycling program (e.g. curb-side collection & drop-off);
- A hazardous waste management program (e.g. household hazardous waste collection, electronics drop-off, oil and grease collection, mercury thermometer exchange);
- A dumpster management program that ensures that all trash is inside the dumpster, it is covered, and that it is not discharging contaminated stormwater;
- A yard waste collection/management program (e.g. curb-side collection & drop-off; composting and reuse/selling);
- Support of legislative efforts to reduce pollutant discharges, especially those of concern in the subwatershed, from all sources including air emissions; &
- Regular evaluation of MDEQ data related to point sources.
4-8 Animal Waste Control [Animal Waste]

Animal waste has the potential to contribute to pathogen and nutrient contamination of waterbodies. In order to minimize this potential, the SWAG members may choose to implement new or augment existing programs, including:

- Evaluating the impacts of animals (wild and pet) on E. coli levels in waterbodies and developing/participating in a regional bacterial source tracking system;
- Requiring the collection and proper disposal of pet wastes;
- Identifying areas where wild animal populations (e.g. geese) contribute to waterbody contamination and prescribing the appropriate measures to deter animals from congregating; and
- Defining and promoting pet run areas away from waterbodies where feasible.

4-9 Sanitary and Combined Sewer System Planning and Maintenance [San. Sewer]

Planning and maintenance of sanitary and combined sewers is critical in preventing the occurrence of sanitary sewer overflows (SSOs) and combined sewer overflows (CSOs). There are a number of considerations to make in this realm, including:

- Giving high priority to connecting areas of septic service, particularly those areas causing documented problems;
- Ensuring proper plant capacities and interceptor capacities;
- Replacing failing system components;
- Constructing facilities or implementing programs to prevent the occurrence of CSOs, SSOs, and basement backups (e.g. infiltration and inflow programs including downspout disconnection);
- Improving municipal and industrial pretreatment programs (e.g. reduced pollutant concentrations, reduced flows – provides offset capacity for service expansion);
- Defining of future service areas or to guide development and preserve natural areas; and
- Employing operating and maintenance procedures that minimize the generation and discharge of pollutants.

SWAG members may choose to directly address some of these considerations. However, in many cases, the SWAG members may have little direct influence on the decision-making process and must rely on expressing these concerns as recommendations to the appropriate entities.
4-10 Flood Control Projects [Flood]
Committing permittees will define mechanisms for assessing the impacts of flood management projects on water quality and examining water quantity structures for incorporation of additional water quality protection devices or practices.

The mechanisms may include:
- Making recommendations to other entities engaging in flood control management to report the impacts on water quality; and
- Instituting a program to examine water quantity structures under the permittee’s jurisdiction, developing a prioritized program to retrofit these structures, and implementing the prioritized program.

4-11 Illicit Discharge Elimination Plan Implementation [IDEP]
The IDEPs contain numerous activities for identifying and correcting illicit connections that are currently being implemented by SWAG entities. This action supports the goals and objectives of this WMP and, as such, this action is included for reference.

The IDEPs contain at least some of the following characteristics:
- dry weather screening of outfalls into waters of the state;
- dye testing municipal facilities, including swimming pools;
- provisions for determining the source and responsibility of the discharge, and ownership and maintenance of the sewer system and drains;
- an integration of outfall inspections and reporting during routine field operations;
- a 24-hour hotline that provides the public an immediate mechanism to report any water quality issues; and
- updates to outfall location maps, when appropriate.

Permittees may wish to implement additional related activities that are not included as part of their IDEP. Non-permittee SWAG members may also wish to implement some of these listed, or unlisted, activities. Where not part of an implementing entity’s IDEP, or in the case of non-permittees, these activities may be eligible for grant funding.

An additional consideration for funding is expanding the scope of the hotlines to be used for: 1) documenting violations of natural features protection (i.e. dumping, tree removal); 2) reporting recreational hazards such as log jams; and 3) providing information for those residents wishing to become more involved or participate in pollution prevention and conservation activities.
4-12 **Septic System Practices [Septic]**
The SWAG and/or its members may develop a program to minimize pollutant discharges from:

- single and two family residential septic systems;
- commercial and small community septic systems discharging up to 10,000 gallons per day; and
- other On-site Sewage Disposal Systems (OSDS), as appropriate.

In Michigan, the local health departments, with autonomous sanitary codes, are the primary regulators for single and two family residential septic systems. Commercial and small community septic systems discharging up to 10,000 gallons per day fall under the “Michigan Criteria for Subsurface Sewage Disposal”. This statewide document is carried out by the local health departments under certification by the MDEQ.

Septic system practices to be implemented may include:

- Technical assistance (clustering systems, maintenance education, maintenance districts, leaching chambers, siting, etc.);
- Inspections (point-of-sale, annual licensing, performance level, identification of failing systems, etc.);
- Enforcement (correction of problems, maintenance checks, etc.);
- Recommendations for alternative technologies in areas where septic systems and sewers are not highly feasible sewage disposal methods; and
- Incentives for septage transfer stations and convenient disposal facilities.

The proper implementation of this action may require revisions to the local health or sanitary code in addition to other legal-based mechanisms.

4-13 **Trash/Debris Reduction [Trash]**
The SWAG and/or its members may develop a program to identify sites that have excessive trash and debris and to prioritize these sites.

This program may include procedures for removing the trash and debris and will be coordinated with volunteer activities conducted under Action 2-6 (e.g., Adopt-A-Road, Adopt-A-River).

Additionally, measures may be instituted to ensure that all events which result in excessive trash, such as festivals and street fairs, are coordinated with the appropriate O&M Departments.

4-14 **Spill Prevention / Notification / Response [Spills]**
The SWAG and/or its members may develop a spill prevention, notification, and response program which may include assistance with investigation of major spills to waterways, fish kills and other emergency water quality issues.
4-15 **Marine Industry Activities [Marine]**

The SWAG and/or its members may develop a program to prevent pollution from marine-related activities. Some components of this program may include:

- Requirements for marinas and boat maintenance facilities;
- Increasing the number of pump-out stations to accommodate boater demand; and
- Supporting the Great Lakes Dredging Team which develops guidance for acceptable contamination thresholds for different uses of dredged material.

These actions are generally those that can be implemented to begin the process of achieving pollutant loading reductions in the short term, extending into the long term. These actions consist of those specifically targeted to prevent soil erosion, control sediment from non-point sources or potential point sources, and correct known soil erosion problems. Early implementation of these actions should focus on public lands, with long-term implementation including private lands if necessary. These actions benefit surface water quality by identifying areas of significant soil erosion and utilizing controls to prevent or minimize sediment discharge to waterbodies.

Specific sources to identify include:

- Bare soil areas;
- Streambank erosion areas;
- Road erosion areas;
- Problematic uses within the riparian corridor;
- Specific sites potentially generating considerable amounts of pollution (i.e., landscape supply companies, landfills, quarries, concrete suppliers, etc.);
- Wind erosion areas;
- Other areas requiring structural controls; and
- Agricultural areas generating pollution.

It is noted that construction-related soil erosion and sediment control is a recognized potential source of sediment; however this source is addressed through other permit programs and is not a component of this plan. SWAG members wishing to address this source should explore becoming involved in the authorizing and enforcing hierarchy regulated by the MDEQ (refer to Chapter 7 for additional discussion on this topic).

5-1 Bare Soil Repair [Bare Soil]

Areas of bare soil have the potential to erode and load sediment into waterbodies. The most problematic bare soil areas are those near waterbodies or those near impervious surfaces. The SWAG and/or its members may take the following steps to repair bare soil areas:

- Utilizing the pollutant source identification (Action 1-10), repair soil problem areas on public land and contact private landowners to encourage repair;
- Researching the possibility for instituting corrective action on private lands through various enforcement mechanisms; and
- Implementing enforcement mechanism if possible, and correct bare soil problems on private lands.

Efforts to repair bare soil include grass or native vegetation planting and sod placement or the use of containing structures, retaining walls, or terracing. Steep slopes which contribute to the problem may be mitigated with stabilization structures, including vegetation, and grade breaks.
5-2 **Streambank / Shoreline Stabilization [Stabilization]**
Streambank and outfall erosion are of critical concern because the eroded soil directly enters a waterbody. The SWAG and/or its members may take the following steps to stabilize streambanks:

- If seeking funding for streambank stabilization, obtain documentation that stream hydraulics will not cause the problem to re-emerge (an MDEQ requirement);
- Utilizing the pollutant source identification (Action 1-10), repair eroding streambanks in accessible locations; and
- Seek access to problematic locations through interactions with appropriate stakeholders and repair streambanks when access issues are resolved.

5-3 **Road and Ditch Stabilization [R]oads**
Road and ditch erosion is of critical concern because the eroded soil may directly enter the storm sewer system or a nearby waterbody (through runoff or by wind action) and may also cause a public safety concern. The SWAG and/or its members may take the following steps to stabilize roads and ditches:

- Utilizing the pollutant source identification (Action 1-10), repair failing paved roads, pave or stabilize dirt roads, and stabilize ditches and embankments on public land and contact private landowners to encourage repair;
- Researching the possibility for instituting corrective action on private lands through various enforcement mechanisms; and
- Implementing enforcement mechanism if possible, and correct eroding roads and ditches on private lands.

5-4 **Streambank Use Exclusion [Use Exclusion]**
Certain activities in the riparian corridor may exacerbate soil erosion problems. These may include ad hoc walking trails too near a waterbody (as opposed to planned and properly constructed trails). The SWAG and/or its members may consider the following to exclude problematic uses from streambank access:

- Utilizing the pollutant source identification (Action 1-10) to identify problematic uses;
- Installing physical barriers to restrict access where appropriate and feasible;
- Installing educational / informational signage; and
- Engaging in cooperative efforts with riparian landowners to restrict harmful uses.
5-5 Specific Site Control [Specific Sites]
Certain sites in the subwatershed, such as (e.g. landscaping supply companies), have the potential to generate large amounts of sediment that may unintentionally enter the stormwater drainage system either on-site or by being transported off-site and deposited on impervious surfaces. The SWAG and/or its members may consider the following to minimize pollution from sensitive sites:

- Utilizing the pollutant source identification (Action 1-10) to identify specific sites;
- Developing appropriate procedures or structural modifications to implement at these sites and working with the sites to realize the improvements (i.e. on-site vehicle washing for vehicles dealing with sediment generating substances); and
- Installing appropriate structures in the public right-of-way (i.e. rock entrances designed to dislodge sediment from vehicle tires).

5-6 Structural Controls [Structural]
Where point sources cannot be controlled with sensitive site actions (see 5-5) or non-point sources are a problem, structural controls may be added that intercept sediment either before it enters or before it is discharged from the storm sewer system. The SWAG and/or its members may consider referencing the pollutant source identification (Action 1-10) and constructing appropriate structures (e.g. catch basin inserts, grit chambers) where appropriate to achieve pollutant load reductions.

The implementation of structural controls should be coordinated with road or utility work to reduce installation costs.

These actions are those that are expected to be implemented in the long-term to achieve the majority of pollutant loading reductions in accordance with targeted levels (see Chapter 5). These actions can be implemented on public lands but are more geared towards private land implementation. Many of these actions can be implemented during new development and significant redevelopment (see ‘3 Ordinances, Zoning, and Development Standards’), although retrofit implementation (the type required to quantify pollutant loading reductions) is likely to require a significant funding source, due to the intensive nature of many of these actions. Implementation of the following actions should rely on the pollutant source identification (Action 1-10). These actions are applicable to the major stressors that impact the subwatershed: sediment, phosphorus, and pathogens. Similar to Category 5, Category 6 actions benefit surface water quality through the implementation of controls to prevent or minimize pollutant discharge to waterbodies. For implementation of these activities, coordination with developers and government officials should be sought to gain support for these type of projects (see Actions 3-1, 3-2, and 3-3).

Refer to Chapter 7 for additional information concerning the following actions.

6-1 Mitigate Existing Impervious Surfaces [Imperviousness]

By managing runoff from impervious surfaces before it enters the storm sewer system or nearby waterbody, pollutant concentrations can be reduced.

The SWAG and/or its members may consider the following to mitigate existing impervious surfaces:
- Vegetated parking lot islands;
- Vegetated road medians;
- Green roofs;
- Pervious pavement / pavers;
- Rain barrels and cisterns (only with timely usage or interim draining protocols being followed); and
- Managing flow from bridge scupper drains.

6-2 Infiltration Techniques [Infiltration]

Using infiltration techniques to manage runoff reduces pollutant concentrations that would otherwise enter the storm sewer system and impact a nearby waterbody. Infiltration techniques refer to practices which promote groundwater recharge and where the soils are conducive for infiltration.

The SWAG and/or its members may consider the following to reduce stormwater impacts through infiltration:
- Rain gardens / tree boxes / bioretention;
- Infiltration basins;
- Infiltration trenches;
- Porous pipe and underground infiltration systems; and
- Water spreading.
6-3 Filtration Techniques [Filtration]
Filtration techniques are similar to infiltration techniques in that they reduce pollutant concentrations. They differ in that filtration is usually used in areas where the soils are not appropriate for infiltration. Subsequently, filtration techniques bring in an alternative filtering media, such as sand, and use an underdrain to direct the treated water to a storm sewer system or waterbody.

The SWAG and/or its members may consider the following to reduce stormwater impacts through filtration:

- Sand/organic/media filters (surface and underground);
- Pocket filters;
- Intermittent filters;
- Recirculating filters;
- Filter strips; and
- Perimeter sand filters.

6-4 Vegetative Buffers & Natural Conveyance [Natural Buffers]
Using vegetative conveyance to manage runoff reduces the amount of pollutants entering the storm sewer system or nearby waterbody.

The SWAG and/or its members may consider the following to reduce stormwater impacts through vegetative buffers and natural conveyance:

- Herbaceous and forested riparian buffers;
- Wet and dry swales; and
- Vegetated channels.

6-5 Retention and Detention [Re-/Detention]
Using retention and detention to manage runoff reduces the amount of pollutants entering the storm sewer system or nearby waterbody.

The SWAG and/or its members may consider the following to reduce stormwater impacts through retention and detention:

- Detention/retention ponds;
- Pond/wetland systems;
- Extended detention wetlands;
- Shallow wetlands; and
- Submerged gravel wetlands.
7 Natural Features and Resources Management

These actions target the identification, protection, and restoration of natural features within the subwatershed. Natural features include animal habitat, land preserves, water resources, geology, and wildlife. The benefit of these actions is to our natural resources that provide economic and social benefits as well as vital habitat for wildlife and aquatic animals.

7-1 Identify Natural Features [ID Natural Features]

Identifying natural features in the subwatershed is integral to implementing other protection and restoration actions. The natural features identification will be prepared by the SWAG and will rely heavily on the contents of this WMP and should utilize any information generated or updated since this WMP was submitted, input from other state, regional, and local resources, and field verifications. The identification should prioritize locations that should be targeted for protection and restoration (along with noted deficiencies), and also:

- which features are unprotected and which are in imminent danger, including: shoreline areas; amphibians, reptiles, and mussels; endangered/threatened species; and sources of woody debris;
- the most effective method for protecting specific features;
- the cost associated with the protection method;
- any limits to preservation and/or restoration (incompatible adjacent land uses and site contamination);
- any factors reinforcing candidacy for preservation and/or restoration, including:
  - proximity to other protected areas or waterbodies;
  - inclusion in existing green infrastructure such as trails or natural corridors;
  - connecting a variety of natural community types;
  - seeking to increase contiguous natural area; and
  - increasing the acreage of underrepresented communities;
- the current ownership status;
- the lead organization for implementing the protection measure, including the ultimate owner of the land and/or development rights; and
- maps of appropriate detail.

Voluntary Action – dependent on funding

Natural Features Information in the WMP

As a basis for the natural features identification, the WMP has summarized information in the Michigan Natural Features Inventory, Macomb County Natural Features Inventory, Lake St. Clair Environmental Characterization / Coastal Habitat Restoration and Conservation Plan, ‘Explore Our Natural World: A Biodiversity Atlas of the Lake Huron to Lake Erie Corridor’, and numerous other documents.

Voluntary Action – dependent on funding

7-2 Natural Land Reserves [Land Reserves]

This action deals with the preservation of land as natural area and to add to the green infrastructure. Action 3-3 embodies the passive method of preserving natural areas: passing ordinances and zoning. This action is comprised of active preservation methods, including: purchasing land, purchasing/transferring development rights, conservation easements, land trusts, leases, deed restrictions, and covenants. This action should be implemented mainly through the SWAG members coordinating with and supporting the work of conservancy groups and government agencies, but may be implemented by the SWAG members themselves if appropriate situations arise. Incentives such as tax credits may also be developed for allowing natural features to be restored through such actions as conservation easements or long-term leases.
7-3 **Natural Feature Protection [NF Protection]**
The SWAG and/or its members may consider protecting natural features in the public domain as well as encouraging and helping facilitate protection on private lands. Some directives upon which to implement actions for natural feature protection may include:

- Ensuring appropriate boundaries around natural areas and waterbodies are established to exclude incompatible land uses and other problem activities (except designated access spots);
- Ensuring wetlands and floodplains are hydraulically available to be used for water retention purposes;
- Ending the practice of straightening and enclosing drains;
- Changing existing dam operations such that minimum flow requirements are established and met and dams are operated as fixed crest structures (not as opened / closed gates);
- Restrict the construction of new dams, in-line detention basins, and lake-level regulators to protect natural water cycles, protect wetlands, and ensure adequate stream flow;
- Remove dams that are no longer used for their original purpose, are a safety hazard, or have failed;
- Managing shoreline erosion by utilizing alternatives to traditional shoreline hardening;
- Restricting new, or focusing mitigation on existing, impervious areas near waterbodies and wetlands;
- Engaging in fisheries and aquatic habitat management activities with sport fishing and conservation groups;
- Engaging in terrestrial habitat management;
- Engaging in threatened and endangered species management;
- Supporting implementation of Michigan’s Aquatic Nuisance Species State Management Plan Update, noting that the U.S. Coast Guard has primary control over ballast water discharges (which introduce most nuisance species); and
- Developing a comprehensive aquatic wildlife program.

7-4 **Natural Feature Restoration [NF Restoration]**
The SWAG and/or its members may consider restoring natural features in the public domain as well as encouraging and helping facilitate restoration measures on private lands. Example activities to restore natural features include:

- Daylighting streams;
- Utilizing/encouraging native plantings & management techniques;
- Engaging in or encouraging reforestation and the planting of trees;
- Protecting endangered and threatened species;
- Eradicating invasive and exotic species;
- Advocating the use of backyard conservation programs by private citizens to add valuable habitat in developed areas;
- Supporting the stocking of native fish in streams;
- Managing areas to provide habitat and act as corridors between natural areas (such as utility corridors and roads);
- Incentives for private landowners to allow the reestablishment of vegetated buffers around already impacted waterbodies; &
- A wetland mitigation/expansion program.
8 Recreation Promotion and Enhancement

These actions relate to increasing recreational opportunities in the watershed and providing education within the recreation areas related to habitat, natural features, and the watershed. These actions benefit the public by connecting them to their water resources and fostering a stewardship ethic.

8-1 Recreation Program [Recreation Program]

To enhance and create recreation areas in the subwatershed, the SWAG and its members may coordinate with existing recreation programs to:

- target locations to provide public education;
- minimize the impacts that problematic activities have on water resources; and
- identify locations to provide recreation activities and facilities.

8-2 Riparian Land Conservation for Parks [Riparian Parks]

For the SWAG and/or its members, incorporating riparian land into parks is a way to conserve this area and let the community enjoy the resource. When using sensitive riparian land for new parks, consideration should be given to leaving vegetated buffers along the water’s edge and keeping parking lots away from the water. Existing riparian parks with modified riparian corridors may consider: utilizing stormwater management techniques, reducing grass mowing and fertilizing, and addressing any other maintenance issues that may affect the waterbody.

8-3 Canoe / Boat Landings / Access Sites [Access]

The SWAG and/or its members may consider adding or enhancing existing access sites to help promote recreation. Access sites provide a stabilized area to access the water, thus protecting other locations. They also provide an opportunity to educate the public about the watershed and how their actions can affect water quality and recreational opportunities.

The SWAG may also support legislation to add a recreational component to the definition of navigability. This may help define a public right on streams, especially smaller ones, to use the waterbody for recreational activities.

8-4 Restore Fishing Opportunities [Fishing]

The SWAG and/or its members may consider restoring natural fisheries that may currently be compromised. While large-scale wildlife management is the function of the Michigan Department of Natural Resources, certain local activities can provide benefits in terms of habitat restoration, migration assistance/blockage removal, and public access that will increase recreational fishing opportunities.

8-5 Trails / Observation Decks [Trails / Decks]

Similar to Action 8-3, the SWAG and/or its members may consider adding or enhancing trails and observation decks to help promote recreation. These facilities provide access to natural areas while controlling and minimizing disturbances. They also provide an opportunity to educate the public about natural features and impacts to them. It may be necessary to increase the public right-of-way if seeking to add trails in certain areas.
Relationship to Goals and Objectives

The actions discussed in this section have been selected to make progress towards achieving the goals and objectives. The relationship of the actions to the goals / objectives (and other requirements) is presented in Table 8-1. The actions are indexed to the goals / objectives as either ‘primary’ or ‘secondary’. Primary actions for a goal / objective are those in which the goal language explicitly or implicitly addresses specific wording of the goal / objective or is likely to provide quantifiable load reductions for pollutants related to the goal / objective. Secondary actions may address specifics of a goal / objective but require implementation information that has not been generated at the plan level or may provide load reductions for pollutants related to the goal / objective but the load reductions are non-quantifiable.

Also in the table, the actions denoted as Phase II requirements are marked with an asterisk. In this plan, all of the goals / objectives have at least one action supporting them in the primary / secondary category. However, because the Phase II program does not deal with funding or recreation, there are no Phase II actions supporting goal / objective III.A.i, III.A.ii, VI.A.i, VI.A.ii, and VI.A.iii.

Additional Actions

An additional set of actions designed to provide an evaluation and revision mechanism for this WMP is defined in Chapter 9.

Action Details

This section presents the details of the actions. Table 8-2 lists the actions and includes the following columns:

- **Number (No.)** – lists the action category and action number;
- **Action** – gives the action title;
- **Lead** – indicates the lead agency in charge of the action (only reflects who will coordinate/initiate an activity and does not imply complete responsibility) and includes: ‘SWAG’ and ‘Permittees’;
- **Schedule** – gives the begin and end schedule for an action (short term = prior to 2010; long term = after 2010), milestone year, the cycle for the action, and an indication of whether or not the action has been started or is complete;
- **Cost Estimate** - indicates material costs and labor hour estimates, and the details, primary cost bearer, and cost cycle to implement an action;
- **Assistance Needed** - indicates financial and technical assistance needed to implement an action;
- **Authority** – lists the federal, state or local legislation, or other mechanism, which allows, prohibits, or requires an action;
- **Comments** – lists any additional detail about the action;
- **Include in SWPPI** - indicates whether or not the action (or a portion thereof) is to be included in the SWPPI or is optional (Y, N, O); and

Sources of the Actions

The actions laid out in this WMP have been generated through consideration of numerous sources, including:

- Watershed-based Permit Requirements;
- The SEMCOG Water Quality Management Plan;
- The Clinton River Assessment (Francis, 2005);
- Clinton River Watershed Remedial and Preventative Action Plan, 1998;
- The St. Clair River and Lake St. Clair Comprehensive Management Plan, June 2004;
- Storm Water Pollution Prevention Initiatives of various permittees; and
- Other Watershed Management Plans representing various permittees.
History of Actions Taken

Various entities in the Clinton River Watershed and surrounding areas have implemented watershed protection actions in the past. The 1988 MDNR RAP identifies some of these, including:

- Implementation of drain commissioner requirements for stormwater detention;
- Adoption of sewer service areas map;
- Establishment of Areawide Water Quality Board;
- Designated Management Agency agreements;
- Educational materials;
- Technical assistance projects;
- The CRWC strategy for stormwater management in urbanizing watersheds (assessment report, technical assistance directory, guide for stormwater management, master stormwater policy plans, etc.);
- Consideration of water quality and habitat conditions in flood control planning studies and projects by the USACE;
- Dredging of the Clinton River mouth segment and consideration of ideas to improve the conditions of this segment;
- Stricter enforcement of NPDES permit compliance;
- Proactive environmental policies implemented by private entities;
- Habitat improvements; and
- River cleanups.


Many of these actions have continued to the present day, and many other actions not listed here have been implemented in the intervening time.

SWPPI Commitment Level – indicates whether or not, and to what level, each permittee is committing to the Phase II actions; the commitment levels are as follows:

- - = no commitment by the Phase II Permittee as the action is not applicable;
N = no commitment by the Phase II Permittee as the action is not able to be implemented;
W = no commitment by the Phase II Permittee, but would like to consider implementing the action if funding is acquired;
Y = Phase II Permittee commits to the action;
E = Phase II Permittee commits to the action and is already doing it in some capacity; and
D = Phase II Permittee commits to the action and has already completed it.

Any disagreements that a SWAG member or Permittee may have with the actions of the plan, or any other part, are detailed in Appendix E.

Note that Lakeview Public Schools has not provided any commitments as they are seeking nested coverage under Macomb County’s permit.

Financial and Technical Assistance

To assist the SWAG and its members in implementing the actions of the plan, sources of financial and technical assistance have been identified. In Table 8-3 potential grant programs and technical resources are identified for each action. Table 8-4 cross-references the funding programs with the numerical references assigned in Table 8-3.
Table 8-1. Relationship of actions to goals and objectives.

<table>
<thead>
<tr>
<th>Goal / Objective</th>
<th>Action</th>
<th>Action Category</th>
<th>Action Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.A.i - Sediment Remediation</td>
<td>VI.B.ii - Implementation Mechanism</td>
<td>11 SWAG*</td>
<td>11</td>
</tr>
<tr>
<td>I.A.i - Prevent Contamination</td>
<td>VI.B.i - Institutionalize Plan</td>
<td>12 ERG*</td>
<td>12</td>
</tr>
<tr>
<td>I.A.i - Nutrient Sources</td>
<td>VI.A.iii - Private Sector Funding</td>
<td>13 Funding</td>
<td>13</td>
</tr>
<tr>
<td>I.A.i - Nutrient Management</td>
<td>VI.A.ii - Grant Proposals</td>
<td>14 Update SWPP</td>
<td>14</td>
</tr>
<tr>
<td>I.A.i - Pathogen Reduction</td>
<td>VI.A.i - Funding Opportunities</td>
<td>15 Update WMP</td>
<td>15</td>
</tr>
<tr>
<td>II.A.i - Targeted Outreach</td>
<td>V.B.i - Reduce CSO / SSO</td>
<td>16 TMDLs*</td>
<td>16</td>
</tr>
<tr>
<td>II.A.i - Habitat Identification</td>
<td>V.A.i - Manage Storm Water</td>
<td>17 Clearinghouse</td>
<td>17</td>
</tr>
<tr>
<td>III.A.iv - Water Safe for Recreation</td>
<td>IV.A.ii - Habitat Restoration</td>
<td>18 Sources</td>
<td>18</td>
</tr>
<tr>
<td>III.A.iii - Increase Opportunities</td>
<td>IV.V.A.i - Habitat Identification</td>
<td>19 PEP*</td>
<td>19</td>
</tr>
<tr>
<td>III.A.ii - Recreational Education</td>
<td>III.A.i - Health Risk Education</td>
<td>20 Public Ed.</td>
<td>20</td>
</tr>
<tr>
<td>III.A.ii - Social Marketing</td>
<td>II.C.i - Outreach Evaluation</td>
<td>21 Municipal Train.*</td>
<td>21</td>
</tr>
<tr>
<td>II.A.ii - Action Understanding</td>
<td>II.B.i - Behavior Modification</td>
<td>22 Demos</td>
<td>22</td>
</tr>
<tr>
<td>II.A.ii - Interactive Learning</td>
<td>II.B.ii - Behavior Modification</td>
<td>23 Involvement</td>
<td>23</td>
</tr>
<tr>
<td>I.D.i - Septic Systems</td>
<td>II.A.i - Targeted Outreach</td>
<td>24 Signage</td>
<td>24</td>
</tr>
<tr>
<td>I.D.i - Septic Systems</td>
<td>I.D.ii - Illicit Connections</td>
<td>25 Meetings</td>
<td>25</td>
</tr>
<tr>
<td>I.D.i - Septic Systems</td>
<td>I.D.ii - Pathogen Reduction</td>
<td>26 Standards*</td>
<td>26</td>
</tr>
<tr>
<td>I.D.i - Septic Systems</td>
<td>I.D.ii - Pathogen Reduction</td>
<td>27 Development</td>
<td>27</td>
</tr>
<tr>
<td>I.D.i - Septic Systems</td>
<td>I.D.ii - Pathogen Reduction</td>
<td>28 Natural Features*</td>
<td>28</td>
</tr>
<tr>
<td>I.D.i - Septic Systems</td>
<td>I.D.ii - Pathogen Reduction</td>
<td>29 Prevention</td>
<td>29</td>
</tr>
<tr>
<td>I.D.i - Septic Systems</td>
<td>I.D.ii - Pathogen Reduction</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>I.D.i - Septic Systems</td>
<td>I.D.ii - Pathogen Reduction</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>I.D.i - Septic Systems</td>
<td>I.D.ii - Pathogen Reduction</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>I.D.i - Septic Systems</td>
<td>I.D.ii - Pathogen Reduction</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>I.D.i - Septic Systems</td>
<td>I.D.ii - Pathogen Reduction</td>
<td>34</td>
<td>34</td>
</tr>
</tbody>
</table>

LEGEND: * = Primary; o = Secondary; * denotes Phase II required action.
Table 8-1. Relationship of actions to goals and objectives. (continued)
Table 8-2. Action details.

<table>
<thead>
<tr>
<th>Category Number</th>
<th>Action Description</th>
<th>Lead Authority</th>
<th>Action Schedule</th>
<th>Schedule Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Promote and Reconvene Subwatershed Advisory Group</td>
<td>SWAG Various state laws</td>
<td>N Short Term 2010</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>2</td>
<td>Evaluation and Revision Guidance</td>
<td>SWAG Phase II Permit</td>
<td>N Short Term 2007</td>
<td>n/a 5-year* n/a</td>
</tr>
<tr>
<td>3</td>
<td>Develop Funding Program</td>
<td>SWAG n/a</td>
<td>N Short Term n/a</td>
<td>n/a Annual n/a</td>
</tr>
<tr>
<td>4</td>
<td>Develop Grant Proposals</td>
<td>SWAG Various federal / state laws</td>
<td>N Short Term n/a</td>
<td>n/a As needed n/a</td>
</tr>
<tr>
<td>5</td>
<td>Update SWPPR</td>
<td>Permits Phase II Permit - COC</td>
<td>N 2007 2007/9</td>
<td>n/a 5-year* n/a</td>
</tr>
<tr>
<td>6</td>
<td>Annual Reports</td>
<td>Permits Phase II Permit - COC</td>
<td>Y 2008 2008</td>
<td>n/a 5-year* n/a</td>
</tr>
<tr>
<td>7</td>
<td>Total Maximum Daily Loads</td>
<td>SWAG Phase II Permit</td>
<td>N Short Term 2015</td>
<td>n/a n/a n/a</td>
</tr>
<tr>
<td>8</td>
<td>Implementation Clearinghouse</td>
<td>SWAG n/a</td>
<td>N Short Term 2010</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>9</td>
<td>Identify Sources of Pollutants</td>
<td>SWAG n/a</td>
<td>N Short Term 2010</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>10</td>
<td>Public Education Plan Implementation</td>
<td>Permits Phase II Permit - PEP</td>
<td>Y n/a n/a</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>11</td>
<td>Additional Public Education</td>
<td>SWAG n/a</td>
<td>N Short Term n/a</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>12</td>
<td>Municipal Employee Training</td>
<td>Permits* Phase II Permit</td>
<td>Y n/a 2013</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>13</td>
<td>Demonstration Projects</td>
<td>SWAG n/a</td>
<td>N Long Term 2015</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>14</td>
<td>Signage</td>
<td>SWAG n/a</td>
<td>Y n/a 2010</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>15</td>
<td>Public Involvement</td>
<td>SWAG n/a</td>
<td>Y n/a 2010</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>16</td>
<td>Community Forums and Stakeholder Workshops</td>
<td>SWAG n/a</td>
<td>Y n/a 2010</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>17</td>
<td>Municipal Officials Involvement and Education</td>
<td>SWAG n/a</td>
<td>Y n/a 2010</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>18</td>
<td>Stormwater Management Standards</td>
<td>Permits* Phase II Permit / Home Rule</td>
<td>N Short Term 2013</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>19</td>
<td>Managing Development Patterns</td>
<td>Permits* Phase II Permit / Home Rule</td>
<td>N Short Term 2013</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>20</td>
<td>Preserve Natural Areas/Features</td>
<td>Permits* Phase II Permit / Home Rule</td>
<td>N Short Term 2013</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>21</td>
<td>Pollution Prevention</td>
<td>Permits* Home Rule</td>
<td>N Short Term 2013</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>22</td>
<td>Sensitive Areas</td>
<td>Permits* Home Rule</td>
<td>N Short Term 2013</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>23</td>
<td>Identify Runoff Contaminants</td>
<td>SWAG n/a</td>
<td>N Short Term 2010</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>24</td>
<td>Identify Actions to Remediate Contaminated Sediments</td>
<td>SWAG n/a</td>
<td>N Short Term 2010</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>25</td>
<td>Storm Sewer System Maintenance and Operations</td>
<td>Permits* Phase II Permit</td>
<td>N Short Term 2013</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>26</td>
<td>Minimizing Pollution from Roads and Lots</td>
<td>Permits* Phase II Permit</td>
<td>N Short Term 2013</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>27</td>
<td>Minimizing Pollution from Municipal Facilities</td>
<td>Permits* Phase II Permit</td>
<td>N Short Term 2013</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>28</td>
<td>Turf Management Practices</td>
<td>Permits* Phase II Permit</td>
<td>N Short Term 2013</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>29</td>
<td>Waste Management</td>
<td>SWAG n/a</td>
<td>N Long Term 2015</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>30</td>
<td>Animal Waste Control</td>
<td>SWAG n/a</td>
<td>N Short Term 2015</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>31</td>
<td>San. / Combined Sewer System Planning and Maintenance</td>
<td>SWAG n/a</td>
<td>N Long Term 2015</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>32</td>
<td>Flood Control Projects</td>
<td>SWAG Phase II Permit</td>
<td>N Short Term 2015</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>33</td>
<td>Illlicit Discharge Elimination Program (IDEP)</td>
<td>Permits* Phase II Permit - IDEP</td>
<td>Y n/a n/a</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>34</td>
<td>Septic System Practices</td>
<td>SWAG n/a</td>
<td>N Long Term 2015</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>35</td>
<td>Trash/Debris Reduction</td>
<td>SWAG n/a</td>
<td>Y Short Term 2010</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>36</td>
<td>Spill Prevention / Notification / Response</td>
<td>SWAG n/a</td>
<td>N Short Term 2010</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>37</td>
<td>Marine Industry Activities</td>
<td>SWAG n/a</td>
<td>N Long Term 2015</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>38</td>
<td>Bare Soil Repair</td>
<td>SWAG n/a</td>
<td>N Short Term 2015</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>39</td>
<td>Streambank Stabilization</td>
<td>SWAG n/a</td>
<td>N Short Term 2015</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>40</td>
<td>Eroding Road Stabilization</td>
<td>SWAG n/a</td>
<td>N Short Term 2015</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>41</td>
<td>Streambank Use Exclusion</td>
<td>SWAG Home Rule</td>
<td>N Long Term 2015</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>42</td>
<td>Specific Site Control</td>
<td>SWAG n/a</td>
<td>N Long Term 2015</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>43</td>
<td>Structural Controls</td>
<td>SWAG n/a</td>
<td>N Long Term 2015</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>44</td>
<td>Mitigate Existing Impervious Surfaces</td>
<td>SWAG n/a</td>
<td>N Long Term 2020</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>45</td>
<td>Infiltration Techniques</td>
<td>SWAG n/a</td>
<td>N Long Term 2020</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>46</td>
<td>Filtration Techniques</td>
<td>SWAG n/a</td>
<td>N Long Term 2020</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>47</td>
<td>Vegetative Buffers and Natural Conveyance</td>
<td>SWAG n/a</td>
<td>N Long Term 2020</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>48</td>
<td>Retention and Detention</td>
<td>SWAG n/a</td>
<td>N Long Term 2020</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>49</td>
<td>Identity Natural Features</td>
<td>SWAG n/a</td>
<td>N Short Term 2010</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>50</td>
<td>Natural Feature Protection</td>
<td>SWAG n/a</td>
<td>N Long Term 2020</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>51</td>
<td>Natural Feature Restoration</td>
<td>SWAG n/a</td>
<td>N Long Term 2020</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>52</td>
<td>Recreation Program</td>
<td>SWAG n/a</td>
<td>N Long Term 2025</td>
<td>Long Term n/a N</td>
</tr>
<tr>
<td>53</td>
<td>Riparian Land Conservation for Parks</td>
<td>SWAG n/a</td>
<td>N Long Term 2025</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>54</td>
<td>Canoe / Boat Landings / Access Sites</td>
<td>SWAG n/a</td>
<td>N Long Term 2025</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>55</td>
<td>Restore Fishing Opportunities</td>
<td>SWAG n/a</td>
<td>N Long Term 2025</td>
<td>n/a Ongoing n/a</td>
</tr>
<tr>
<td>56</td>
<td>Trails / Observation Decks</td>
<td>SWAG n/a</td>
<td>N Long Term 2025</td>
<td>n/a Ongoing n/a</td>
</tr>
</tbody>
</table>
Table 8-2. Action details. (rows continue across from previous page)

<table>
<thead>
<tr>
<th>Material</th>
<th>Labor Hours</th>
<th>Labor Costs ($)</th>
<th>Material Costs ($)</th>
<th>Labor Costs ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs</td>
<td>Bearer</td>
<td>Details</td>
<td>Cycle</td>
<td>Technical</td>
</tr>
<tr>
<td>* - does not include long term costs associated with changes</td>
<td>* - does not include long term labor associated with changes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Entity</th>
<th>Cost / Labor Estimate</th>
<th>Assistance Req.</th>
<th>Comments</th>
<th>SWPPI Commitment Level</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Costs</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$15,000</td>
<td>150-300</td>
<td>Promo. Materials</td>
<td>Annual</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None</td>
<td>100-200</td>
<td>Entire SWAG</td>
<td>each cycle</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$5,000</td>
<td>100-200</td>
<td>Legal Fees</td>
<td>Annual</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$500</td>
<td>40-80</td>
<td>Proposal Copies</td>
<td>Entitlement</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$500</td>
<td>100-250</td>
<td>SWPPI Copies</td>
<td>Entity Seeking Grant</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$5,000</td>
<td>500-1000</td>
<td>Plan Copies</td>
<td>Each Permittee</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$15,000*</td>
<td>100-250</td>
<td>Report Copies</td>
<td>Each Permittee</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None</td>
<td>200-400</td>
<td>Entire SWAG</td>
<td>Each TMDL</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None</td>
<td>150-300</td>
<td>Entire SWAG</td>
<td>annual</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None</td>
<td>100-200</td>
<td>Entire SWAG</td>
<td>once</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None</td>
<td>200-400</td>
<td>Entire SWAG</td>
<td>annual</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$10,000</td>
<td>250-500</td>
<td>Materials / Dist.</td>
<td>Entitlement</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$10,000</td>
<td>250-500</td>
<td>Implementing Entity</td>
<td>annual</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$5,000</td>
<td>250-500</td>
<td>Handouts</td>
<td>Each Permittee</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$30,000*</td>
<td>500-1000</td>
<td>Materials/Adverts</td>
<td>Each Permittee</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$2,500</td>
<td>100-250</td>
<td>Signs</td>
<td>Annual</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$5,000</td>
<td>150-300</td>
<td>Materials</td>
<td>Entitlement</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$5,000</td>
<td>150-300</td>
<td>Implementing Entity</td>
<td>annual</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$5,000</td>
<td>250-400</td>
<td>Materials</td>
<td>Entitlement</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$30,000</td>
<td>1000-2000</td>
<td>Legal Fees, Docs.</td>
<td>Each Permittee</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$30,000</td>
<td>1000-2000</td>
<td>Legal Fees, Docs.</td>
<td>Each Permittee</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$30,000</td>
<td>1000-2000</td>
<td>Legal Fees, Docs.</td>
<td>Each Permittee</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None</td>
<td>500-750</td>
<td>Entire SWAG</td>
<td>annual</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None*</td>
<td>400-800</td>
<td>Documents</td>
<td>Entitlement</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None*</td>
<td>400-800</td>
<td>Each Permittee*</td>
<td>once</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None*</td>
<td>400-800</td>
<td>Each Permittee*</td>
<td>once</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None*</td>
<td>400-800</td>
<td>Each Permittee*</td>
<td>once</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None*</td>
<td>400-800</td>
<td>Each Permittee*</td>
<td>once</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$5,000*</td>
<td>600-1200</td>
<td>Legal Fees</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$5,000*</td>
<td>600-1200</td>
<td>Legal Fees</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$1,000</td>
<td>200-400</td>
<td>Documents</td>
<td>Entitlement</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$2,000</td>
<td>150-300</td>
<td>Documents</td>
<td>Entitlement</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None*</td>
<td>200-400</td>
<td>Documents</td>
<td>Entitlement</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None*</td>
<td>200-400</td>
<td>Documents</td>
<td>Entitlement</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>None*</td>
<td>200-400</td>
<td>Documents</td>
<td>Entitlement</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$50,000</td>
<td>1000-2000</td>
<td>Materials</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$5,000</td>
<td>200-400</td>
<td>Materials</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$10,000</td>
<td>100-200</td>
<td>Materials</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$10,000</td>
<td>100-200</td>
<td>Materials</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$10,000</td>
<td>100-200</td>
<td>Materials</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$10,000</td>
<td>100-200</td>
<td>Materials</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$25,000*</td>
<td>400-800</td>
<td>Materials</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$25,000*</td>
<td>400-800</td>
<td>Materials</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$25,000*</td>
<td>400-800</td>
<td>Materials</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$25,000*</td>
<td>400-800</td>
<td>Materials</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$25,000*</td>
<td>400-800</td>
<td>Materials</td>
<td>Implementing Entity</td>
<td>$0</td>
<td>N</td>
</tr>
<tr>
<td>$1,500</td>
<td>250-500</td>
<td>Documents</td>
<td>Entitlement</td>
<td>$0</td>
<td>N</td>
</tr>
</tbody>
</table>

**Table 8-4 for potential grant programs**

**Table 8-4 for potential sources**

**LEGEND**

- D=commitment, Y=commitment, E=commitment, N=no commitment
- --=not applicable

**COMMITMENT LEVEL**

- Y=E=commitment, already doing
- D=commitment, completed
- N=no commitment
- --=not applicable

---

Performance Roadmap

Lake St. Clair Direct Drainage Subwatershed

10/31/2006
Table 8-3. Potential funding/technical assistance.

<table>
<thead>
<tr>
<th>Category Number</th>
<th>Action Title</th>
<th>USDA NRCS</th>
<th>USFWS</th>
<th>USGS NPS</th>
<th>USEPA</th>
<th>GLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Promote and Reconvene Subwatershed Advisor Group</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Evaluation and Revision Guidance</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Develop Funding Program</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Develop Grant Proposals</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Update SWPPP</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Update WMP</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Annual Reports</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Total Maximum Daily Loads</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Implementation Clearinghouse</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Identify Sources of Pollutants</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Public Education Plan Implementation</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Additional Public Education</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Municipal Employee Training</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Managing Development Patterns</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Preserve Natural Areas/Features</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Public Involvement</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Community Forums and Stakeholder Workshops</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Municipal Officials Involvement and Education</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Stormwater Management Standards</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Preserve Natural Areas/Features</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Polluton Prevention</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Demonstration Projects</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Municipal Employee Training</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Demonstration Projects</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Municipal Employee Training</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Stormwater Management Standards</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Preserve Natural Areas/Features</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Public Involvement</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Community Forums and Stakeholder Workshops</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Municipal Officials Involvement and Education</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Stormwater Management Standards</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>Preserve Natural Areas/Features</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>Polluton Prevention</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Demonstration Projects</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>Municipal Employee Training</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>Stormwater Management Standards</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>Preserve Natural Areas/Features</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Public Involvement</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>Community Forums and Stakeholder Workshops</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Municipal Officials Involvement and Education</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>Stormwater Management Standards</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>Preserve Natural Areas/Features</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>Polluton Prevention</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>Demonstration Projects</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>Municipal Employee Training</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>Stormwater Management Standards</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>Preserve Natural Areas/Features</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>Public Involvement</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>Community Forums and Stakeholder Workshops</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>Municipal Officials Involvement and Education</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>Stormwater Management Standards</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>Preserve Natural Areas/Features</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>53</td>
<td>Polluton Prevention</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>Demonstration Projects</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>Municipal Employee Training</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>Stormwater Management Standards</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>Preserve Natural Areas/Features</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>Polluton Prevention</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>Demonstration Projects</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>Municipal Employee Training</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>Stormwater Management Standards</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>Preserve Natural Areas/Features</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>Polluton Prevention</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>Demonstration Projects</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>Municipal Employee Training</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>Stormwater Management Standards</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>Preserve Natural Areas/Features</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>Polluton Prevention</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>69</td>
<td>Demonstration Projects</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>Municipal Employee Training</td>
<td>6</td>
<td></td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 8-3. Potential funding/technical assistance. (rows continue across from previous page)

<table>
<thead>
<tr>
<th>Fin. Asst. Progs. (cont’d)</th>
<th>Technical Assistance Programs and Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOAA EDA USDOC FHA USF DOT</td>
<td>SEMCOG, NRCS &amp; USDA (6), CRP, legal</td>
</tr>
<tr>
<td>3, 5 2 2 2 3</td>
<td>MDEQ, EPA, CRP, SEMCOG, NRCS &amp; USDA (6), USACE (2)</td>
</tr>
<tr>
<td>3, 5 2 2 2 3</td>
<td>SEMCOG, NRCS &amp; USDA (6), USEACE (2), legal</td>
</tr>
<tr>
<td>2</td>
<td>MDEQ, SEMCOG, local entities, CRWC</td>
</tr>
<tr>
<td>3, 5 2 2 2 3</td>
<td>CRWC, SEMCOG, NRCS &amp; USDA (6), USEACE (2)</td>
</tr>
<tr>
<td>3 2 2 2 3</td>
<td>MDEQ, SEMCOG, CRWC, NRCS &amp; USDA (6), USEACE (2), local entities</td>
</tr>
<tr>
<td>2</td>
<td>MDEQ, USFWS, USEC, USDA, local entities, LEGAL</td>
</tr>
<tr>
<td>3, 4</td>
<td>MDEQ, MDNR, CWP, USEA, local entities</td>
</tr>
<tr>
<td>1, 2, 4, 5, 6 1 1</td>
<td>CRWC, SEMCOG, NRCS &amp; USDA (3), MDNR, MDEQ, MSU, AAW, IMAP, TNC, TPL, MNA, WHIP, MDA, (ALSO 2-2)</td>
</tr>
<tr>
<td>4</td>
<td>CDs, USFWS, NAVWP, PF, EU, MLC, USEACE (1), MLC, GRP, LAP, School Districts, VCEE, USEPA, GREEN, (ALSO 2-1)</td>
</tr>
<tr>
<td>4</td>
<td>SEMCOG, MDEQ</td>
</tr>
<tr>
<td>4</td>
<td>Local Entities, CRWC, SEMCOG, MDEQ, MDNR</td>
</tr>
<tr>
<td>4</td>
<td>CRWC, MDEQ, SEMCOG, local entities</td>
</tr>
<tr>
<td>4</td>
<td>CRWC, SEMCOG, MEC, MLC, SN, MSU, USEA, AAW</td>
</tr>
<tr>
<td>4</td>
<td>CRWC, SEMCOG, AAW</td>
</tr>
<tr>
<td>4</td>
<td>SEMCOG, CRWC, local government</td>
</tr>
<tr>
<td>5</td>
<td>MDEQ, Legal, SEMCOG, LID Center, NC Ag, NRCS, USDA 1 (3), MDA, MDNR, MEC, CRP, CDG</td>
</tr>
<tr>
<td>5</td>
<td>Local Entities, MDEQ, Legal, SEMCOG, LID Center, NC Ag, NRCS, USDA 1 (3), MDA, MDNR</td>
</tr>
<tr>
<td>5</td>
<td>Local Entities, MDEQ, Legal, SEMCOG, LID Center, NC Ag, NRCS, USDA 1 (3), MDA, MDNR</td>
</tr>
<tr>
<td>5</td>
<td>Local Entities, MDEQ, Legal, SEMCOG, LID Center, NC Ag, NRCS, USDA 1 (3), MDA, MDNR</td>
</tr>
<tr>
<td>5</td>
<td>Local Entities, MDEQ, Legal, SEMCOG, LID Center, NC Ag, NRCS, USDA 1 (3), MDA, MDNR</td>
</tr>
<tr>
<td>5</td>
<td>MDEQ, GLC, USEPA, USEFWS, USGS, NOAA</td>
</tr>
<tr>
<td>5</td>
<td>MDEQ, GLC, USEPA, USEFWS, USGS, NOAA</td>
</tr>
<tr>
<td>6</td>
<td>Local Entities, MDEQ, Legal, CRP</td>
</tr>
<tr>
<td>6</td>
<td>MDEQ, Legal, local entities, MDA, MEC, CRP, CDG</td>
</tr>
<tr>
<td>6</td>
<td>Local Entities, MDEQ, Legal, MDNR, MDA, CDN, GRP</td>
</tr>
<tr>
<td>6</td>
<td>Local Entities, MDEQ, Legal, MDNR, MDA, CDN, GRP</td>
</tr>
<tr>
<td>2, 3</td>
<td>MDEQ, Legal, local entities, WHMD, MDC</td>
</tr>
<tr>
<td>6</td>
<td>Local Entities, MDEQ, Legal, local entities, WHMD, MDC</td>
</tr>
<tr>
<td>6</td>
<td>Local Entities, MDNR, USEFWS</td>
</tr>
<tr>
<td>6</td>
<td>MDEQ, Local Entities, SEMCOG</td>
</tr>
<tr>
<td>4, 5</td>
<td>Local Entities, MDEQ, FEMA-NFIP, USEACE (4)</td>
</tr>
<tr>
<td>5</td>
<td>MDEQ, Legal, local entities, CRWC, SEMCOG, EPW, SWC</td>
</tr>
<tr>
<td>5</td>
<td>MDEQ, local entities, legal</td>
</tr>
<tr>
<td>5</td>
<td>Local Entities, CRWC, MDEQ</td>
</tr>
<tr>
<td>5</td>
<td>MDEQ, Legal, local entities, CRP, CRP, CDG</td>
</tr>
<tr>
<td>2, 3, 6, 8</td>
<td>MDEQ, Local Entities, CRWC</td>
</tr>
<tr>
<td>1, 2, 6</td>
<td>MDEQ, Legal, local entities, CRWC, LID Center, EPW, SWC, MDNR</td>
</tr>
<tr>
<td>1, 2, 6</td>
<td>Local Entities, MDEQ, EPW, SWC, MDNR, MDA, (ALSO 6, 10)</td>
</tr>
<tr>
<td>6</td>
<td>Local Entities, MDEQ, EPW, SWC, MDNR, MDA, legal</td>
</tr>
<tr>
<td>6</td>
<td>Local Entities, MDEQ, local entities, manufacturers, EPA, MDA</td>
</tr>
<tr>
<td>2</td>
<td>MDEQ, LID Center, EPW, SWC, MDNR, local entities</td>
</tr>
<tr>
<td>2, 4</td>
<td>MDEQ, LID Center, EPW, SWC, local entities</td>
</tr>
<tr>
<td>2, 4</td>
<td>MDEQ, LID Center, EPW, SWC, local entities</td>
</tr>
<tr>
<td>2, 4</td>
<td>MDEQ, LID Center, EPW, SWC, local entities</td>
</tr>
<tr>
<td>5</td>
<td>MDEQ, MDNR, MDIF, MIF, CNB, CR, MLC, MNA, SMLC, TED, CRP, CDG, MDA, NC Ag, (ALSO 6, 10)</td>
</tr>
<tr>
<td>5</td>
<td>SMLC, MLC, MNA, TRP, CRP, CDG, MDA, GRP, MDA, (ALSO 6, 10)</td>
</tr>
<tr>
<td>5</td>
<td>MDEQ, Local Entities, NRCS &amp; USDA 1 (3), CDG, MDA, SN</td>
</tr>
<tr>
<td>5, 1</td>
<td>MDEQ, Local Entities, CRP, CDG, MDA, SN, USEACE (1), MDNR, MDA, CRP, CDG, MDA, SN</td>
</tr>
<tr>
<td>1, 2, 5, 6</td>
<td>SMLC, MLC, CRP, local entities, NRCS &amp; USDA 1, CDG, MDA, MDNR, local entities</td>
</tr>
<tr>
<td>1, 2, 6</td>
<td>CRWC, MDEQ, local entities</td>
</tr>
<tr>
<td>1, 2, 5, 6, 7</td>
<td>CRWC, CRP, MDNR, CRP, GLC, CDG, local entities</td>
</tr>
<tr>
<td>1</td>
<td>CRWC, HCA, local entities, MDNR</td>
</tr>
</tbody>
</table>
Table 8-4. Numerical cross-reference for previous table.

<table>
<thead>
<tr>
<th>Organization</th>
<th>Program</th>
<th>Financial Assistance</th>
<th>Technical Assistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA 1</td>
<td>Conservation Reserve Program</td>
<td>10.069</td>
<td>X</td>
</tr>
<tr>
<td>USDA 2</td>
<td>Cooperative Extension Service</td>
<td>10.500</td>
<td>X</td>
</tr>
<tr>
<td>NRCS, USDA 3</td>
<td>Soil and Water Conservation</td>
<td>10.902</td>
<td>X</td>
</tr>
<tr>
<td>NRCS, USDA 4</td>
<td>Watershed Protection and Flood Prevention</td>
<td>10.904</td>
<td>X X</td>
</tr>
<tr>
<td>NRCS, USDA 5</td>
<td>Plant Materials Conservation</td>
<td>10.905</td>
<td>X</td>
</tr>
<tr>
<td>NRCS, USDA 6</td>
<td>Watershed Surveys and Planning</td>
<td>10.906</td>
<td>X</td>
</tr>
<tr>
<td>NRCS, USDA 7</td>
<td>Farmland Protection Program</td>
<td>10.913</td>
<td>X</td>
</tr>
<tr>
<td>NRCS, USDA 8</td>
<td>Wildlife Habitat Incentive Program</td>
<td>10.914</td>
<td>X</td>
</tr>
<tr>
<td>USDA 9</td>
<td>Scientific Cooperation and Research</td>
<td>10.961</td>
<td>X</td>
</tr>
<tr>
<td>NRCS, USDA 10</td>
<td>Resource Conservation and Development</td>
<td>10.901</td>
<td>X</td>
</tr>
<tr>
<td>NRCS, USDA 11</td>
<td>Water Bank Program</td>
<td>10.062</td>
<td>X</td>
</tr>
<tr>
<td>NRCS, USDA 12</td>
<td>Wetlands Reserve Program</td>
<td>10.072</td>
<td>X</td>
</tr>
<tr>
<td>USDA 13</td>
<td>Water and Waste Disposal Systems for Rural Communities</td>
<td>10.760</td>
<td>X</td>
</tr>
<tr>
<td>USDA 14</td>
<td>Technical Assistance and Training Grants</td>
<td>10.761</td>
<td>X</td>
</tr>
<tr>
<td>USDA 15</td>
<td>Solid Waste Management Grants</td>
<td>10.762</td>
<td>X</td>
</tr>
<tr>
<td>USDA 16</td>
<td>Water and Waste Disposal Loans</td>
<td>10.770</td>
<td>X</td>
</tr>
<tr>
<td>NRCS, USDA 17</td>
<td>Watershed Rehabilitation Program</td>
<td>10.916</td>
<td>X X</td>
</tr>
<tr>
<td>NRCS, USDA 18</td>
<td>Agricultural Management Assistance</td>
<td>10.917</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 1</td>
<td>Interjurisdictional Fisheries Act of 1986</td>
<td>11.407</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 2</td>
<td>Coastal Zone Management Administration Awards</td>
<td>11.419</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 3</td>
<td>Unallied Management Projects</td>
<td>11.454</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 4</td>
<td>Cooperative Science and Education Program</td>
<td>11.455</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 5</td>
<td>Habitat Conservation</td>
<td>11.463</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 6</td>
<td>Coastal Services Center</td>
<td>11.473</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 7</td>
<td>Anadromous Fish Conservation Act</td>
<td>11.405</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 8</td>
<td>Unallied Science Program*</td>
<td>11.472</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 9</td>
<td>Hydrologic Research*</td>
<td>11.462</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 10</td>
<td>Environmental Sciences, Applications, Data, and Education*</td>
<td>11.440</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 11</td>
<td>Marine Sanctuary Program*</td>
<td>11.429</td>
<td>X</td>
</tr>
<tr>
<td>NOAA 12</td>
<td>Office of Oceanic and Atmospheric Research (OAR) Joint and Cooperative institutes*</td>
<td>11.432</td>
<td>X</td>
</tr>
<tr>
<td>USACE 1</td>
<td>Aquatic Plant Control</td>
<td>12.100</td>
<td>X</td>
</tr>
<tr>
<td>USACE 2</td>
<td>Planning Assistance to States</td>
<td>12.110</td>
<td>X</td>
</tr>
<tr>
<td>USACE 3</td>
<td>Remedial Action Plan Program</td>
<td>12.102</td>
<td>X</td>
</tr>
<tr>
<td>USACE 4</td>
<td>Emergency Rehabilitation of Flood Control Works or Federally Authorized Coastal Protection Works</td>
<td>12.102</td>
<td>X</td>
</tr>
<tr>
<td>USACE 5</td>
<td>Emergency Operations Flood Response and Post Flood Response</td>
<td>12.103</td>
<td>X X</td>
</tr>
<tr>
<td>USACE 6</td>
<td>Beach Erosion Control Projects</td>
<td>12.101</td>
<td>X X</td>
</tr>
<tr>
<td>USFWS 1</td>
<td>Sport Fish Restoration</td>
<td>15.605</td>
<td>X</td>
</tr>
<tr>
<td>USFWS 2</td>
<td>Coastal Wetlands Planning, Protection and Restoration Act</td>
<td>15.614</td>
<td>X</td>
</tr>
<tr>
<td>USFWS 3</td>
<td>North American Wetlands Conservation Fund</td>
<td>15.623</td>
<td>X</td>
</tr>
<tr>
<td>USFWS 4</td>
<td>Coastal Program</td>
<td>15.630</td>
<td>X</td>
</tr>
<tr>
<td>USFWS 5</td>
<td>Partners for Fish and Wildlife</td>
<td>15.631</td>
<td>X</td>
</tr>
<tr>
<td>USGS 6</td>
<td>Assistance to State Water Resources Research Institutes</td>
<td>15.805</td>
<td>X</td>
</tr>
<tr>
<td>USGS 7</td>
<td>U.S. Geological Survey Research and Data Acquisition</td>
<td>15.808</td>
<td>X</td>
</tr>
<tr>
<td>USGS 8</td>
<td>Outdoor Recreation Acquisition, Development Planning</td>
<td>15.916</td>
<td>X</td>
</tr>
<tr>
<td>USFWS 9</td>
<td>Conservation Grants Private Stewardship for Imperiled Species</td>
<td>15.632</td>
<td>X</td>
</tr>
<tr>
<td>USFWS 10</td>
<td>Landowner Incentive</td>
<td>15.633</td>
<td>X</td>
</tr>
<tr>
<td>USFWS 11</td>
<td>Challenge Cost Share</td>
<td>15.642</td>
<td>X</td>
</tr>
<tr>
<td>USGS 12</td>
<td>Rivers, Trails and Conservation Assistance</td>
<td>15.921</td>
<td>X X</td>
</tr>
<tr>
<td>USFWS 13</td>
<td>Wildlife Restoration</td>
<td>15.611</td>
<td>X</td>
</tr>
<tr>
<td>NPS 14</td>
<td>Historic Preservation Fund Grants-In-Aid*</td>
<td>15.904</td>
<td>X</td>
</tr>
<tr>
<td>NPS 15</td>
<td>National Natural Landmarks Program*</td>
<td>15.910</td>
<td>X</td>
</tr>
<tr>
<td>NPS 16</td>
<td>National Historic Landmark*</td>
<td>15.912</td>
<td>X</td>
</tr>
<tr>
<td>FHA, USDOT 1</td>
<td>Recreational Trails Program</td>
<td>20.219</td>
<td>X</td>
</tr>
<tr>
<td>USEPA 1</td>
<td>Surveys, Studies, Investigations, Demonstrations and Special Purpose Activities Relating to the Clean Air Act</td>
<td>66.034</td>
<td>X</td>
</tr>
<tr>
<td>USEPA 2</td>
<td>Compliance Assistance Support Services to the Regulated Community and Other Assistance</td>
<td>66.305</td>
<td>X</td>
</tr>
<tr>
<td>USEPA 3</td>
<td>Water Pollution Control State and Interstate Program</td>
<td>66.419</td>
<td>X</td>
</tr>
<tr>
<td>USEPA 4</td>
<td>Surveys, Studies, Demonstrations, and Special Purpose Section 1442 of the Safe Drinking Water Act</td>
<td>66.424</td>
<td>X</td>
</tr>
<tr>
<td>USEPA 5</td>
<td>State Public Water System Supervision</td>
<td>66.432</td>
<td>X</td>
</tr>
<tr>
<td>USEPA 7</td>
<td>Targeted Watershed Initiative</td>
<td>66.439</td>
<td>X</td>
</tr>
<tr>
<td>USEPA 8</td>
<td>Water Quality Management Planning</td>
<td>66.454</td>
<td>X</td>
</tr>
<tr>
<td>USEPA 9</td>
<td>Nonpoint Source Implementation Grants</td>
<td>66.460</td>
<td>X</td>
</tr>
<tr>
<td>USEPA 10</td>
<td>Wetland Program Development Grant</td>
<td>66.461</td>
<td>X</td>
</tr>
<tr>
<td>Organization</td>
<td>Program #</td>
<td>Program</td>
<td>Federal Catalog #</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>-------------------------------------------------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>USEPA</td>
<td>11</td>
<td>Water Quality Cooperative Agreements</td>
<td>66.463</td>
</tr>
<tr>
<td>USEPA</td>
<td>12</td>
<td>Capitalization Grants for Drinking Water State Revolving Funds</td>
<td>66.468</td>
</tr>
<tr>
<td>USEPA</td>
<td>13</td>
<td>Great Lakes Program</td>
<td>66.469</td>
</tr>
<tr>
<td>USEPA</td>
<td>14</td>
<td>Pesticide Environmental Stewardship Regional Grants</td>
<td>66.714</td>
</tr>
<tr>
<td>USEPA</td>
<td>15</td>
<td>Water Protection Grants to the States</td>
<td>66.474</td>
</tr>
<tr>
<td>USEPA</td>
<td>16</td>
<td>Water Security Training and Technical Assistance Grant Program</td>
<td>66.475</td>
</tr>
<tr>
<td>USEPA</td>
<td>17</td>
<td>Science to Achieve Results (STAR) Program</td>
<td>66.509</td>
</tr>
<tr>
<td>USEPA</td>
<td>18</td>
<td>Surveys, Studies, Investigations and Special Purpose Grants Within the Office of Research and Development</td>
<td>66.510</td>
</tr>
<tr>
<td>USEPA</td>
<td>19</td>
<td>Office of Research and Development Consolidated Research</td>
<td>66.511</td>
</tr>
<tr>
<td>USEPA</td>
<td>20</td>
<td>State Information Grants</td>
<td>66.608</td>
</tr>
<tr>
<td>USEPA</td>
<td>21</td>
<td>Protection of Children and the Aging as a Fundamental Goal of Public Health and Environmental</td>
<td>66.609</td>
</tr>
<tr>
<td>USEPA</td>
<td>22</td>
<td>Surveys, Studies, Investigations and Special Purpose Grants Within the Office of the Administrator</td>
<td>66.610</td>
</tr>
<tr>
<td>USEPA</td>
<td>23</td>
<td>Pollution Prevention Grants Program</td>
<td>66.708</td>
</tr>
<tr>
<td>USEPA</td>
<td>24</td>
<td>Capacity Building Grants and Cooperative Agreements for States and Tribes</td>
<td>66.709</td>
</tr>
<tr>
<td>USEPA</td>
<td>25</td>
<td>Surveys, Studies, Investigations, Training Demonstrations and Educational Outreach</td>
<td>66.716</td>
</tr>
<tr>
<td>USEPA</td>
<td>26</td>
<td>Source Reduction Assistance</td>
<td>66.717</td>
</tr>
<tr>
<td>USEPA</td>
<td>27</td>
<td>Toxic Substances Compliance Monitoring Cooperative Agreements</td>
<td>66.701</td>
</tr>
<tr>
<td>USEPA</td>
<td>28</td>
<td>International Financial Assistance Projects Sponsored by the Office of International Affairs</td>
<td>66.931</td>
</tr>
<tr>
<td>USEPA</td>
<td>29</td>
<td>State Revolving Fund</td>
<td>66.716</td>
</tr>
<tr>
<td>USEPA</td>
<td>30</td>
<td>The Pollution Prevention Information Network Competition (Pollution Prevention Resource Exchange)</td>
<td></td>
</tr>
<tr>
<td>USEPA</td>
<td>31</td>
<td>The Source Reduction Grant Program Competition</td>
<td>66.604</td>
</tr>
<tr>
<td>USEPA</td>
<td>32</td>
<td>The Pollution Prevention Grant Program</td>
<td>66.605</td>
</tr>
<tr>
<td>USEPA</td>
<td>33</td>
<td>Solid Waste Management Assistance</td>
<td>66.808</td>
</tr>
<tr>
<td>USEPA</td>
<td>34</td>
<td>Hazardous Waste Management State Program Support</td>
<td>66.801</td>
</tr>
<tr>
<td>USEPA</td>
<td>35</td>
<td>Capitalization Grants for State Revolving Funds</td>
<td>66.458</td>
</tr>
<tr>
<td>USEAP</td>
<td>36</td>
<td>Wastewater Operator Training Grant Program (Technical Assistance)</td>
<td>66.467</td>
</tr>
<tr>
<td>USEPA</td>
<td>37</td>
<td>Environmental Protection Consolidated Research</td>
<td>66.500</td>
</tr>
<tr>
<td>USEPA</td>
<td>38</td>
<td>Senior Environmental Employment Program</td>
<td>66.508</td>
</tr>
<tr>
<td>USEPA</td>
<td>39</td>
<td>Environmental Protection Consolidated Grants Program Support</td>
<td>66.600</td>
</tr>
<tr>
<td>USEPA</td>
<td>40</td>
<td>Environmental Justice Grants to Small Community Groups</td>
<td>66.604</td>
</tr>
<tr>
<td>USEPA</td>
<td>41</td>
<td>Performance Partnership Grants</td>
<td>66.605</td>
</tr>
<tr>
<td>USEPA</td>
<td>42</td>
<td>Surveys, Studies, Investigations and Special Purpose Grants</td>
<td>66.606</td>
</tr>
<tr>
<td>USEPA</td>
<td>43</td>
<td>Environmental Policy and Innovation Grants</td>
<td>66.611</td>
</tr>
<tr>
<td>USEPA</td>
<td>44</td>
<td>State Underground Water Source Protection</td>
<td>66.433</td>
</tr>
<tr>
<td>USEPA</td>
<td>45</td>
<td>Environmental Education Grants*</td>
<td>66.951</td>
</tr>
<tr>
<td>USEPA</td>
<td>46</td>
<td>Environmental Education and Training Program*</td>
<td>66.950</td>
</tr>
<tr>
<td>USEPA</td>
<td>47</td>
<td>Construction Grants for Wastewater Treatment Works*</td>
<td>66.418</td>
</tr>
<tr>
<td>USEPA</td>
<td>48</td>
<td>Beach Monitoring and Notification Program Implementation Grants*</td>
<td>66.472</td>
</tr>
<tr>
<td>USEPA</td>
<td>49</td>
<td>Chemical Emergency Preparedness and Prevention (CEPP) Technical Assistance Grants*</td>
<td>66.801</td>
</tr>
<tr>
<td>NIH, HSS</td>
<td>1</td>
<td>Biological Response to Environmental Health Hazards*</td>
<td>93.113</td>
</tr>
<tr>
<td>ATSDR, HSS</td>
<td>2</td>
<td>Great Lakes Human Health Effects Research*</td>
<td>93.208</td>
</tr>
<tr>
<td>MDEQ</td>
<td>1</td>
<td>Beach Act Funds</td>
<td>66.418</td>
</tr>
<tr>
<td>MDEQ</td>
<td>2</td>
<td>Clean Water Act Section 319 Grant Program</td>
<td>66.511</td>
</tr>
<tr>
<td>MDEQ</td>
<td>3</td>
<td>Clean Michigan Initiative Environmental Bond</td>
<td>66.604</td>
</tr>
<tr>
<td>GLC</td>
<td>1</td>
<td>The Great Lakes Basin Program for Soil Erosion and Sediment Control Grant Program</td>
<td>66.608</td>
</tr>
</tbody>
</table>
Pollutant Load Reductions

In addition to meeting Phase II permit requirements, and addressing the goals and objectives of the WMP, the actions presented in this chapter are designed to address the significant stressors presented in Chapter 5. These stressors include: sediment, phosphorus, and pathogens. Addressing sediment, phosphorus, and pathogens involves achieving a reduction in loading of these pollutants.

The following sub-sections discuss the actions to be taken to address each stressor.

Sediment

Based on the analysis in Chapter 5, no load reductions are required for the various catchments in the subwatershed. However, actions may still be taken to reduce the current loadings which are given below:

- Grosse Pointe: 66 tons/year
- Lake - North: 661 tons/year
- Lake - South: 263 tons/year

This equals a total of 990 tons/year that are discharged into Lake St. Clair. Any load reductions will come from the implementation of various actions over many years.

Activities to Address Known Sources

Based on data previously collected and other data collected specifically in support of this plan, a list of specific activities to reduce pollutant loads has been identified.

Bare Soil Repair (Action 5-1)

The ‘Pervious Area Assessment’ of the ‘Unified Subwatershed and Site Reconnaissance’ protocol documented 2 locations of bare soil within the subwatershed. This is assumed to be 2% of the total in the subwatershed, giving a total of 100 locations. These locations are assumed to be distributed between the catchments on an area-weighted basis, yielding:

- Grosse Pointe: 31 locations
- Lake – North: 36 locations
- Lake – South: 33 locations

Each location is estimated to be 500 square feet and have a loading rate of 2.5 lbs/sf/yr (0.00125 tons/sf/yr). The annual sediment load in each catchment that may be removed by repairing bare soil areas can be calculated as:

\[
\text{Bare Soil Repair Load Reduction (tons/yr)} = \# \text{locations} \times 500 \text{ sf per location} \times 0.00125 \text{ tons/sf/yr}
\]

Applying this equation for each catchment yields the following estimated load reductions:

- Grosse Pointe: 19 tons/yr
- Lake – North: 23 tons/yr
- Lake – South: 21 tons/yr

Streambank Stabilization (Action 5-2): Utilizing Road-Stream Crossing Data

The ‘Road-Stream Crossing Survey’ involved surveying sites in each of the catchments as follows:

- Grosse Pointe: 0 sites out of 0 total (no open channels)
- Lake – North: 7 sites out of 7

Future Loadings

Changing conditions in the subwatershed, such as land use conversion, may result in higher pollutant loadings than those calculated in Chapter 5. However, it is assumed these increases will be offset by planning actions (see Action Category 3) that are designed to minimize the impacts of development.
The number of poor and fair streambank conditions documented is given as follows:

- Lake – North: 1 poor site and 2 fair sites
- Lake – South: 0 poor sites and 0 fair sites

Each site is assumed to be 500 sf, the erosion rate for poor sites is 10 lbs/sf/yr (0.005 tons/sf/yr), and the erosion rate for fair sites is 5 lbs/sf/yr (0.0025 tons/sf/yr). The annual sediment load in each catchment that can be removed by repairing streambanks at road/stream crossings can be calculated as:

Road-Stream Crossing Stabilization Load Reduction (tons/yr) =

\[
(# \text{ poor sites} \times 500 \text{ sf} \times 0.005 \text{ tons/sf/yr}) +
(# \text{ fair sites} \times 500 \text{ sf} \times 0.0025 \text{ tons/sf/yr})
\]

Applying this equation for each catchment yields the following estimated load reductions:

- Lake – North: 5 tons/yr
- Lake – South: 0 tons/yr

Streambank Stabilization (Action 5-2): Utilizing Unified Stream Assessment Data

The ‘Unified Stream Assessment’ surveyed eight 0.5 mile stretches on one stream in the subwatershed and seven others in the Clinton River Watershed. Based on this data, the eroding area per stream mile averaged 300 feet long by 10 feet high (3,000 sf/mile). However, this data was applicable to 3rd order streams only and it is necessary to estimate eroding area characteristics for 1st and 2nd-order streams. These characteristics include:

- 1st order streams: 50 feet long by 1 foot high (50 sf/mile)
- 2nd order streams: 100 feet long by 3 feet high (150 sf/mile)

Based on photographic evidence, it was noted that many of the eroded areas did not appear to be active. As such, it was assumed that the eroding area square footage per mile should be reduced by approximately 66%, such that:

- 1st order streams: 20 sf/mile
- 2nd order streams: 100 sf/mile
- 3rd order streams: 1,000 sf/mile

The total stream miles in each catchment were obtained from GIS and are given as:

- Grosse Pointe: 0 miles
- Lake – North: 10 miles
- Lake – South: 1 mile

The total stream miles in each catchment were broken down into stream orders based upon ratios presented in ‘Fluvial Processes in Geomorphology’ (Leopold, 1964). These are presented as follows (where indicated, the numbers have been adjusted to account for unique catchment configurations – e.g. the catchment having reduced 1st and 2nd order streams due to the presence of storm sewers):

- Lake – North
  - 1st Order: 5 miles
  - 2nd Order: 3 miles
  - 3rd Order: 1 mile

Stream Order

Stream order is a measure of the position of a stream in the hierarchy of tributaries.

- 1st order streams are those which have no tributaries; the average length is 1 mile with an average 1 square mile drainage area
- 2nd order streams are those which have only 1st order streams as tributaries; the average length is 2.3 miles with an average 4.7 square mile drainage area
- 3rd order streams have only 1st and 2nd order streams as tributaries; the average length is 5.3 miles with an average 23 square mile drainage area
Lake - South
- 1st Order: 0 miles (adjusted)
- 2nd Order: 1 miles (adjusted)

The loading rate is assumed to be 5 lbs/sf/yr (0.0025 tons/sf/yr). The annual sediment load in each catchment that can be removed by stabilizing streambanks (not at road-stream crossings) can be calculated as

Unified Stream Assessment Stabilization Load Reduction (tons/yr) =

\[
\frac{(#1 \text{st order stream miles} \times 20 \text{ sf/mile actively eroding}) + \ (#2 \text{nd order stream miles} \times 100 \text{ sf/mile actively eroding}) + \ (#3 \text{rd order stream miles} \times 1000 \text{ sf/mile actively eroding})}{X \ 0.0025 \text{ tons/sf/yr}}
\]

Applying the equation for each catchment yields the following load reductions:
- Lake – North: 16 tons/yr
- Lake - South: 2 tons/yr

Summary
The following table summarizes the load reductions that are estimated to be achieved if the known sources are addressed.

Table 8-5. Loading reductions that result from addressing known sources.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Bare Soil (tons/yr)</th>
<th>Road-Stream Crossing (tons/yr)</th>
<th>Unified Stream Assessment (tons/yr)</th>
<th>Total (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Lake – North</td>
<td>23</td>
<td>5</td>
<td>16</td>
<td>44</td>
</tr>
<tr>
<td>Lake – South</td>
<td>21</td>
<td>0</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>TOTAL</td>
<td>63</td>
<td>5</td>
<td>18</td>
<td>86</td>
</tr>
</tbody>
</table>

Addressing these known problems will account for the indicated sediment load reduction in each of the catchments.

Activities to Address Other Sources
To provide for load reductions (either in concert with or in lieu of addressing the issues discussed in the previous topic) additional actions may be implemented. A detailed removal plan has not been developed because different municipalities may choose to use different techniques based on preferred practices, available resources, physical site constraints, and funding. Some of the actions that may be implemented and for which a reduction in sediment load may be calculated include, with select examples (additional details can be found in Chapters 7 and 8):

4-3 Storm Sewer System Maintenance and Operations
4-4 Minimizing Pollution from Roads and Lots
4-5 Minimizing Pollution from Municipal Facilities
4-11 IDEP
   Example: Once the current IDEP cycle is completed, each community may take its measured data and the number of problems that were corrected to calculate a reduction in sediment loading.
4-12 Septic System Practices
5-1 Bare Soil Repair
5-2 Streambank / Shoreline Stabilization
5-3 Road and Ditch Stabilization
5-4 Streambank Use Exclusion
   Example: Where unauthorized access to a waterbody has resulted in erosion problems, exclusion measures may be erected and the reduction in sediment loading calculated.
5-5 Sensitive Site Control
   Example: A site, such as a landscaping supply company, which is determined to discharge 50 t/yr of sediment, may have controls installed to reduce this discharge.
5-6 Structural Controls
   Example: Swirl separators or sediment traps may be installed in municipal catch basins to achieve a reduction in sediment loading that can be calculated once the devices have been put into service.

6-1 Mitigate Existing Impervious Surfaces
   Example: 1,000 acres of urban land (with a loading rate of 300 lbs/ac/yr) may be outfitted with parking lot islands and side drainage ditches (with a 60% removal efficiency) that result in a 90 t/yr reduction in sediment load.
6-2 Infiltration Techniques
6-3 Filtration Techniques
6-4 Vegetative Buffers and Natural Conveyance
6-5 Retention and Detention
7-4 Natural Feature Restoration

Summary
This subsection of the plan does describe in some detail how sediment loading reductions can be achieved, but does not prescribe in detail how this implementation has to occur. This is to provide the greatest flexibility for the entities implementing this plan to select actions that are appropriate based on cost, funding opportunities, and other factors such as updated data and load analyses.

The ultimate goal of the actions presented in this subsection is to collectively achieve sediment loading reduction.

Phosphorus
Based on the analysis in Chapter 5, the following load reductions are required for the various catchments in the subwatershed:
   o Grosse Pointe 1.0 tons/year
   o Lake - North 3.8 tons/year
   o Lake - South 2.5 tons/year

This equals a total of 7.3 tons/year that will be prevented from loading into the waterbodies of the subwatershed.

The loading reductions will come from the implementation of many actions over many years, including some from sources that have yet to be specifically identified.

Activities to Address Known Sources
First, given an assumed concentration of phosphorus in soil of 0.0005 lb/lb, the actions presented in Table 8-5 provide phosphorus reductions as presented in Table 8-6.
Table 8-6. Phosphorus load reductions associated with the addressing of known sediment problems.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Bare Soil (tons/yr)</th>
<th>Road-Stream Crossing (tons/yr)</th>
<th>Unified Stream Assessment (tons/yr)</th>
<th>Total (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grosse Pointe</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Lake – North</td>
<td>0.01</td>
<td>&lt; 0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Lake – South</td>
<td>0.01</td>
<td>0.00</td>
<td>&lt; 0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.03</td>
<td>&lt; 0.01</td>
<td>0.01</td>
<td>0.04</td>
</tr>
</tbody>
</table>

When feasible, these load reductions should be corrected with sampled phosphorus/soil ratios. As currently calculated, these reductions account for only around 0.5% of the total needed for the subwatershed.

**Activities to Address Other Sources**

To meet the target load reductions (either in concert with or in lieu of the reductions obtained through addressing sediment issues) additional actions will have to be implemented. A detailed removal plan has not been developed because different municipalities may choose to use different techniques based on preferred practices, available resources, physical site constraints, and funding. Some of the actions that may be implemented and for which a reduction in phosphorus load may be calculated include, with select examples (additional details can be found in Chapters 7 and 8):

- 4-3 Storm Sewer System Maintenance and Operations
- 4-4 Minimizing Pollution from Roads and Lots
- 4-5 Minimizing Pollution from Municipal Facilities
- 4-8 Animal Waste Control
- 4-9 Sanitary and Combined Sewer System Planning and Maintenance
- 4-11 IDEP
  - Example: Once the current IDEP cycle is completed, each community may take its measured data and the number of problems that were corrected to calculate a reduction in phosphorus loading.
- 4-12 Septic System Practices
- 5-1 Bare Soil Repair
- 5-2 Streambank / Shoreline Stabilization
- 5-3 Road and Ditch Stabilization
- 5-4 Streambank Use Exclusion
- 5-5 Sensitive Site Control
  - Example: A site, such as a nursery or greenhouse which is determined to discharge 1 t/yr of phosphorus may have controls installed such that its discharge is reduced to 0.1 t/yr.
- 5-6 Structural Controls
- 6-1 Mitigate Existing Impervious Surfaces
  - Example: 1,000 acres of urban land (with a loading rate of 1.0 lbs/ac/yr) may be outfitted with parking lot islands and side drainage ditches (with a 60% removal efficiency) that result in a 0.3 t/yr reduction in sediment load.
- 6-2 Infiltration Techniques
- 6-3 Filtration Techniques
- 6-4 Vegetative Buffers and Natural Conveyance
- 6-5 Retention and Detention
- 7-4 Natural Feature Restoration
Summary

This subsection of the plan does describe in some detail how phosphorus loading reductions can be achieved, but does not prescribe in detail how this implementation has to occur. This is to provide the greatest flexibility for the entities implementing this plan to select actions that are appropriate based on cost, funding opportunities, and other factors such as updated data and load analyses.

The ultimate goal of the actions presented in this subsection is to collectively achieve the desired phosphorus loading reduction in each catchment of the subwatershed.

Pathogens

The complex nature of pathogens requires an analysis that does not rely on achieving quantified load reductions, but instead eventually achieving compliance with concentration-based water quality standards.

This approach involves implementing pathogen reducing actions to address all sources (especially CSOs, illicit discharges, and wildlife and pets) and continuously monitoring to determine if progress is being made.

Achieving the water quality standard will be the result of many actions over many years, including some that address sources that have yet to be specifically identified. Some of the actions that may be implemented to reduce pathogen discharges include, with select examples:

- **4-8 Animal Waste Control**
  
  Example: Providing pet waste disposal opportunities near waterbodies where pet runs are available will prevent pathogens from this waste from entering waterbodies through stormwater runoff.

- **4-9 Sanitary and Combined Sewer System Planning and Maintenance**
  
  Example: Improvements to sanitary and combined sewer systems, especially where known SSOs and CSOs occur, will reduce pathogen discharges to waterbodies.

- **4-11 IDEP**
  
  Example: The main emphasis of the IDEP programs is to find and correct illicit discharges to waterbodies, especially those of the type where raw sanitary sewage is discharging from the storm sewers. This action will reduce pathogen discharges to waterbodies.

- **4-12 Septic System Practices**

- **5-4 Streambank Use Exclusion**

- **5-5 Sensitive Site Control**

- **5-6 Structural Controls**

- **6-1 Mitigate Existing Impervious Surfaces**

- **6-2 Infiltration Techniques**

- **6-3 Filtration Techniques**

- **6-4 Vegetative Buffers and Natural Conveyance**

- **6-5 Retention and Detention**

- **7-4 Natural Feature Restoration**

The ultimate goal of the actions presented in this subsection is to collectively achieve the pathogen water quality standard at all sampled locations throughout the subwatershed.
**Decision-making Principles and Prioritization Process**

While there were numerous factors in play when determining the actions to include in the WMP, a few of the important principles include:

- Addressing permit requirements;
- Addressing other funding requirements;
- Addressing the goals and objectives of the plan;
- Addressing known water quality issues;
- Addressing the desires of the public;
- Addressing public concerns;
- Cost considerations;
- Maintenance considerations;
- Appropriateness of action;
- Likelihood of success (i.e., achieving pollutant reduction or successfully addressing an objective);
- Relevant social and scientific research;
- Previous experience with the actions; and
- Potential for public acceptance.

The actions have been prioritized in that a timeline has been assigned to guide their implementation. The timeline was assigned based on:

- prescribed dates for submittals;
- feedback from the SWAG members as to when the actions needed to and realistically could be implemented (with a consideration for leveraging those actions which are already occurring);
- addressing the most pressing water quality problems as soon as possible;
- implementing the most cost-effective measures in the short-term (to make the best use of scarce funds); and
- relegating actions requiring outside funds to the long-term portions of the schedule (to provide ample time to procure necessary funding).

**References**


Mair, R. E-mail communication concerning a MDEQ presentation given at an AWWA meeting. 2006.

Michigan Department of Environmental Quality [MDEQ]. NPDES General Permit No. MIG619000 for Coverage of Stormwater Discharges for Municipal Separate Storm Sewer Systems Subject to Watershed Plan Requirements.

9. Evaluation and Revision

Introduction

This Watershed Management Plan (WMP) is a living document and is meant to be used, revised, and altered to fit the changing needs of the subwatershed as new information becomes available. This adaptive management approach to watershed planning provides for continuous input and modification of procedures, processes, and products. An integral component of planning in this setting is the evaluation and revision mechanisms that drive these modifications.

As required by the Watershed-based Permit, the WMP must include the following evaluation and revision components:

- Evaluate the effects of the implemented actions and progress toward goals and objectives; and
- Re-evaluate goals and objectives as part of an on-going, iterative process.

This chapter establishes the evaluation procedures (including monitoring protocols selected from Chapter 9) and lists suggestions for steps to guide revision of the WMP. The procedures and suggestions reflect the importance of an on-going iterative process. Portions of this chapter are based on "A Framework for Assessing the Effectiveness of Jurisdictional Urban Runoff Management Programs" developed by the San Diego Municipal Storm Water Co-Permittees (2003).

Elements of Watershed Planning

Watershed planning generally consists of three elements:

- Program Planning;
- Program Implementation; and
- Effectiveness Assessment.

The relationship between the three elements is presented in Figure 9-1. They are discussed in the following subsections.

Figure 9-1. Relationship between the three elements.

---

Quotable Quotations

“Not everything that can be counted counts, and not everything that counts can be counted.”

- Albert Einstein

“However beautiful the strategy, you should occasionally look at the results.”

- Winston Churchill
**Program Planning**

The program planning phase requires a significant amount of public participation to characterize the watershed and develop and prioritize goals and objectives for the watershed. While the elements of program planning interact in a cyclical manner, program planning typically initiates the cycle (as it has done for this initial submittal of the WMP). However, program planning also occurs following the effectiveness assessment phase if changes to the WMP are necessary.

This program planning phase can be broken down into the four steps discussed in the topics below 1) Goal and Objective Development, 2) Action Development, 3) Measures of Success, and 4) Assessment.

**Goal and Objective Development**

The subwatershed advisory group (SWAG) has worked with the stakeholders and public to obtain input and comments during the initial watershed planning process. Discussions at SWAG meetings helped to prioritize long-term watershed goals and short-term objectives that would impact water quality within the watershed. Every effort was made to involve the public during the development process in order to gain support for implementation. The public participation efforts are documented in Chapter 4. The finalized goals and objectives are presented in Chapter 6.

**Action Development**

To implement the goals and objectives, specific actions were developed for each objective. Action plan development was completed as part of this WMP and is presented in detail in Chapter 8. The actions were assigned a schedule, responsible party, cost, and means to measure success (see following topic).

**Measures of Success**

Measures of success, or ‘evaluation mechanisms’, are essential to gauge implementation status and assess the effectiveness of the overall program. Identification of quantifiable measures provides both measurability and accountability within the program. Six success levels have been established, as shown in Figure 9-2, to provide an organizing framework for the evaluation mechanisms.

**Figure 9-2. Success levels.**
Level 1: Compliance with Activity-Based Permit Requirements
Success at this level involves implementing the actions that are described or required in the permit. These activities are expected to be beneficial to water quality because they are part of a successful WMP.

Level 2: Changes in Knowledge / Awareness
Success at this level requires showing an increase in knowledge and awareness in the various elements of the public that are targeted through the Public Participation Plan (PPP), Public Education Plan (PEP), and this WMP.

Level 3: Behavioral Change / BMP Implementation
Success at this level requires showing behavioral changes in the public due to increased knowledge and awareness. This may be documented through the use of a survey or tracking the number of Best Management Practices (BMPs) installed or retrofitted.

Level 4: Load Reductions
Success at this level requires showing that the amount of pollutants entering local waterbodies are being reduced. Load reductions may be quantified by comparing monitoring data from before and after a particular action is implemented or calculated based on other information.

Level 5: Changes in Discharge Quality
Success at this level requires showing that the stormwater discharge entering waterbodies is of better quality than before. This involves comparing stormwater outfall monitoring data from before and after a series of complementary actions (to address a specific problem) has been implemented.

Level 6: Changes in Receiving Water Quality
Success at this level requires showing that the water quality of the receiving waterbody is of better quality than before. This involves comparing waterbody monitoring data from future ‘improved’ conditions to the data collected when waterbody problems were defined.

Assessment
Each evaluation mechanism requires some data as feedback to allow an assessment to occur. Thus the evaluation mechanisms can be classified based on the data that is required, as follows:

Measure of Activity Completion
These mechanisms require only an indication of whether or not an activity has been completed. These measures are used to assess implementation and include the ‘Implementation Milestones’ which are discussed in a subsection of the ‘Evaluation and Revision Procedure’ section of this chapter.

Measure of Usage
These mechanisms require data concerning how much a facility has been used or how much material has been distributed or collected. These measures are used to assess implementation.

Measure of Change
These mechanisms require data concerning baseline and post-action levels of knowledge or water quality. These measures are used to assess effectiveness.

Difficulty in Measuring Success
The unique characteristics of the subwatershed (e.g. the lack of open channel waterways and the receiving water being a large lake that is impacted by numerous other watersheds) make documenting success at Level 5 and Level 6 problematic.

Permit Requirements
The following actions are Phase II requirements that are being implemented to meet ‘Success Level 1’:

1-2: Evaluation and Revision Procedure
1-5: Update SWPPI
1-6: Update WMP
1-7: Annual Reports
1-8: Total Maximum Daily Loads
2-1: Public Education Plan Implementation
2-3: Municipal Employee Training
3-1: Stormwater Management Standards
3-2: Managing Development Patterns
3-3: Preserve Natural Areas/Features
4-3: Storm Water Sewer System Maintenance and Operations
4-4: Minimizing Pollution from Roads and Lots
4-5: Minimizing Pollution from Municipal Facilities
4-6: Turf Management Practices
4-10: Flood Control Projects
4-11: Illicit Discharge Elimination Program (IDEP)
Program Implementation
The program implementation phase consists of implementing the actions defined in the WMP which was developed or updated during the program planning phase.

Data, lessons learned, and comments on the WMP are compiled during this phase and are addressed in the effectiveness assessment phase.

Effectiveness Assessment
The effectiveness assessment phase consists of a water quality assessment, a program assessment, and an integrated assessment, as discussed in the following topics.

Water Quality Assessment
Water quality assessment is the analysis of water quality data to draw conclusions on the condition of or changes to the condition of receiving waters or discharges to those waters. The water quality assessment provides a way to assess the direct evaluation mechanisms. Long-term assessment is also necessary to ensure that seasonal, annual, and other variables can be identified and are considered when interpreting the results.

Program Assessment
Program assessment involves reviewing the attainment of the indirect evaluation mechanisms. This review involves checking that implementation has occurred according to schedule and that program effectiveness can be shown (where appropriate). The review also involves investigating failures and making recommendations for the plan update, including continuing the implementation of certain actions, modifying some, and ceasing others - as well as the reasons behind the recommendations.

Program assessment is an annual task that will be reported in the annual progress reports.

Integrated Assessment
The integrated assessment incorporates the water quality assessment and program assessment and evaluates the entire watershed management plan as a whole. The integrated assessment identifies and addresses data gaps in the water quality monitoring program and finds causal relationships between actions taken through the WMP and changes in load reductions, discharge quality, and receiving water quality.

Generally, determining the effectiveness of the actions is a qualitative process that relies on both the assessments showing at least minimal improvement in water quality / awareness and knowledge over time.

Evaluation Procedure
This section defines the specific evaluation and revision guidance (ERG) that has been developed for this WMP, based on the information presented in the preceding section of this chapter.

Evaluation Mechanisms
The first component of the ERG involves looking at each action and assessing its success in implementation according to its schedule and effectiveness. As discussed in the previous section of this chapter, success...
is evaluated through six levels which can be grouped under three classifications 1) Measure of Activity Completion, 2) Measure of Usage, and 3) Measure of Change

**Measure of Activity Completion**
Most of the actions can be assessed on the basis of whether or not they are complete and on schedule (some cannot as they are ongoing). This is indicated and tracked in Table 8-2. These evaluation mechanisms are largely not included in a level of the success level pyramid. However, for those actions which are Phase II Requirements, the measures of activity completion fall into Level 1 of the success level pyramid (Compliance with Activity-Based Permit Requirements).

**Measure of Usage**
Most of the actions can be assessed on the basis of measure of usage. Many of the actions also have multiple measures of usage associated with them. As with the activity completion assessments, most of the usage assessments do not fall into any level of the success level pyramid; however, some do fall into Level 1.

**Measure of Change**
The same actions that are assessed on the basis of a measure of usage can also be assessed on the basis of a measure of change. All of the ‘measure of change’ assessments fall into one of four levels:

- Level 2: Changes in Knowledge / Awareness;
- Level 3: Behavioral Change / BMP Implementation;
- Level 4: Load Reductions; and
- Level 5: Changes in Discharge Quality.

Level 2: Changes in Knowledge and Awareness are measured primarily with respect to the Public Education and Participation actions (Action Category 2 in Chapter 8).

Level 3: Behavioral Change and BMP Implementation are measured primarily with respect to:

- Ordinance, Zoning, and Development Standards (Action Group 3 in Chapter 8) – e.g. observing the rate at which communities adopt ordinances, zoning, and development standards;
- Good Housekeeping and Pollution Prevention (Action Group 4 in Chapter 8) – e.g. observing the rate at which communities adopt procedures and programs;
- Stormwater BMPs: Non-construction Related SESC (Action Group 5 in Chapter 8) – e.g. observing the amount of implementation that occurs at problem sites on private land;
- Stormwater BMPs: Other Pollutant Load Reduction Controls (Action Group 6 in Chapter 8) – e.g. observing the amount of implementation that occurs on private land; and
- Natural Features and Resource Management (Action Group 7 in Chapter 8) – e.g. observing the amount of implementation that occurs on private land.

---

**Characteristics of the Evaluation Measures**
In accordance with the Water Quality Management Plan (SEMCOG, 1999) for Southeast Michigan, the evaluation measures for this plan have been developed to:

- Be understandable,
- Reflect changes over time, and
- Reflect the unique characteristics of the study area.
Level 4: Load Reductions can be measured primarily with respect to:

- Good Housekeeping and Pollution Prevention actions (Category 4) - e.g. calculating the load reductions associated with newly implemented activities;
- Stormwater BMPs: Non-construction Related SESC actions (Category 5) - e.g. calculating load reductions associated with installed BMPs; and
- Stormwater BMPs: Other Pollutant Load Reduction Controls actions (Category 6) - e.g. calculating the load reductions associated with installed BMPs.

Level 5: Changes in Discharge Quality can be documented through an assessment opportunity presented through Action 4-12 (IDEP) by documenting the discovery rate of illicit discharges over time.

Note that none of the task or action assessments fall into Level 6: Changes in Receiving Water Quality; rather all of the tasks and actions in this WMP are working together to help improve receiving water quality.

The correlation between actions, the specific measures, and their respective success levels are displayed in Table 9-1. While these assessment measures are presented in Chapter 9, they are technically part of the actions (from Chapter 8) with which they are associated. As such, the measures listed that are associated with Phase II requirements are part of the commitment made by each permittee. These measures are shown in italics. All of the measures associated with the other actions (non-Phase II) are suggestions for potential measures. Additional measures, substitutions, or omissions may be made depending on the specific activities undertaken under these actions (as they are generally less specific in nature than the Phase II actions).

The data by which to assess some of the evaluation mechanisms comes directly from implementation of the associated action. However, data to assess other evaluation mechanisms requires additional actions. For example, Changes in Knowledge and Awareness (Level 2) and Behavioral Change / BMP Implementation (Level 3) likely require some sort of survey. Load Reductions (Level 4) likely require post-implementation monitoring and/or calculations. Additionally, Changes in Discharge Quality (Level 5) and Changes in Receiving Water Quality (Level 6) have few or no measures associated with specific actions and likely require extensive review of collected monitoring data or the collection of new monitoring data to gauge success.

### Actions Most Likely to have Quantifiable Load Reductions

The following actions are listed in Chapter 8 as having the potential for quantifiable load reductions associated with them:

- 4-3: Storm Sewer System Maintenance and Operations
- 4-4: Minimizing Pollution from Roads and Lots
- 4-5: Minimizing Pollution from Municipal Facilities
- 4-8: Animal Waste Control
- 4-9: Sanitary and Combined Sewer System Planning and Maintenance
- 4-11: Illicit Discharge Elimination Program (IDEP)
- 4-12: Septic System Practices
- 5-1: Bare Soil Repair
- 5-2: Streambank / Shoreline Stabilization
- 5-3: Road and Ditch Stabilization
- 5-4: Streambank Use Exclusion
- 5-5: Sensitive Site Control
- 5-6: Structural Controls
- 6-1: Mitigate Existing Impervious Surfaces
- 6-2: Infiltration Techniques
- 6-3: Filtration Techniques
- 6-4: Vegetative Buffers and Natural Conveyance
- 6-5: Retention and Detention
- 7-4: Natural Feature Restoration
<table>
<thead>
<tr>
<th>Action Category</th>
<th>Action Number</th>
<th>Short Title</th>
<th>Action</th>
<th>Measure of Change</th>
<th>Measure of Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>SWAG</td>
<td>Percentage of all entities in subwatershed participating</td>
<td>SWAG</td>
<td>Percentage of SWAG members represented at meetings</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>Grants</td>
<td>The number of grants received</td>
<td>Grants</td>
<td>The number of grants proposals submitted</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>Update WMP</td>
<td>Percentage of all entities in subwatershed participating</td>
<td>Update WMP</td>
<td>Percentage of eligible permittees continuing with watershed permit</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>TMDLs</td>
<td>Percentage of completed TMDLs addressed in WMP</td>
<td>TMDLs</td>
<td>Percentage of nested jurisdictions incorporated into planning</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>Clearinghouse</td>
<td>Percentage of SWAG members reporting to clearinghouse</td>
<td>Clearinghouse</td>
<td>Documented number of non-SWAG actions supporting WMP</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>Sources</td>
<td>Number of additional sources consulted during identification</td>
<td>Sources</td>
<td>Number of additional sources consulted during identification</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>PEP</td>
<td>see PEPs</td>
<td>PEP</td>
<td>see PEPs</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Public Ed.</td>
<td>Number of education materials distributed</td>
<td>Public Ed.</td>
<td>Percentage of target audience indicating increased awareness</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Municipal Ed.</td>
<td>Percentage of staff trained</td>
<td>Municipal Ed.</td>
<td>Percentage of municipal tasks performed with improved protocols</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Signage</td>
<td>Percentage of watershed boundary signs with signs</td>
<td>Signage</td>
<td>Knowledge level trends over time</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Involvement</td>
<td>Percentage of total catch basins with markers</td>
<td>Involvement</td>
<td>Percentage of total road miles adopted</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Meetings</td>
<td>Percentage of boat launch locations with signs</td>
<td>Meetings</td>
<td>Percentage of boat launch locations with signs</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>Officials</td>
<td>Percentage of municipal officials directly educated</td>
<td>Officials</td>
<td>Percentage of municipal officials familiar with SWAG / WMP</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>Roads / Lots</td>
<td>Percentage of committed permittees adopting procedures</td>
<td>Roads / Lots</td>
<td>Percentage of other SWAG members adopting procedures</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Standards</td>
<td>Percentage of committed permittees adopting standards</td>
<td>Standards</td>
<td>Percentage of other SWAG members adopting standards</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Development</td>
<td>Percentage of committed permittees managing development</td>
<td>Development</td>
<td>Percentage of other SWAG members managing development</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Natural Features</td>
<td>Percentage of committed permittees protecting natural features</td>
<td>Natural Features</td>
<td>Percentage of other SWAG members protecting natural features</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Prevention</td>
<td>Percentage of committed permittees adopting ordinances/progs.</td>
<td>Prevention</td>
<td>Percentage of other SWAG members adopting ordinances/progs.</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Storm Sewer</td>
<td>Percentage of committed permittees adopting procedures</td>
<td>Storm Sewer</td>
<td>Percentage of other SWAG members adopting procedures</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Storm Sewer</td>
<td>Number of downsputs disconnected from system</td>
<td>Storm Sewer</td>
<td>Pollutant load reductions</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Roads / Lots</td>
<td>Percentage of committed permittees adopting procedures</td>
<td>Roads / Lots</td>
<td>Pollutant load reductions</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Garages</td>
<td>Percentage of committed permittees adopting procedures</td>
<td>Garages</td>
<td>Pollutant load reductions</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Turf Practices</td>
<td>Percentage of committed permittees adopting procedures</td>
<td>Turf Practices</td>
<td>Percentage of other SWAG members adopting procedures</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Turf Practices</td>
<td>Percentage of committed permittees adopting procedures</td>
<td>Turf Practices</td>
<td>Percentage of other SWAG members adopting procedures</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>Waste</td>
<td>Percentage of SWAG members implementing action</td>
<td>Waste</td>
<td>Percentage of SWAG members implementing action</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>Animal Waste</td>
<td>Percentage of committed permittees adopting procedures</td>
<td>Animal Waste</td>
<td>Pollutant load reductions</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>Animal Waste</td>
<td>Percentage of committed permittees adopting procedures</td>
<td>Animal Waste</td>
<td>Pollutant load reductions</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>San. Sewer</td>
<td>Percentage of SWAG members implementing action</td>
<td>San. Sewer</td>
<td>Reduction of basement backups / CSOs / SSOs</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>San. Sewer</td>
<td>Percentage of SWAG members implementing action</td>
<td>San. Sewer</td>
<td>Reduction of basement backups / CSOs / SSOs</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>Flood</td>
<td>Percentage of committed permittees adopting procedures</td>
<td>Flood</td>
<td>Percentage of other SWAG members adopting procedures</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>Flood</td>
<td>Percentage of flood control structures augmented based on action</td>
<td>Flood</td>
<td>Pollutant load reductions</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>IDEP</td>
<td>see IDEPs</td>
<td>IDEP</td>
<td>see IDEPs</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>IDEP</td>
<td>see IDEPs</td>
<td>IDEP</td>
<td>see IDEPs</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>Septic</td>
<td>Percentage of SWAG members implementing action</td>
<td>Septic</td>
<td>Percentage of SWAG members implementing action</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>Septic</td>
<td>Percentage of existing septic systems connected to sewers</td>
<td>Septic</td>
<td>Percentage of existing septic systems connected to sewers</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>Septic</td>
<td>Percentage of septic system owners requesting technical assistance</td>
<td>Septic</td>
<td>Percentage of septic systems voluntarily implementing upgrades</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>Septic</td>
<td>Percentage of septic systems inspected</td>
<td>Septic</td>
<td>Percentage of septic systems inspected</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>Septic</td>
<td>Percentage of inspected systems with enforcement action</td>
<td>Septic</td>
<td>Percentage of enforcement actions resulting in problem abatement</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>Septic</td>
<td>Pollutant load reductions</td>
<td>Septic</td>
<td>Pollutant load reductions</td>
</tr>
</tbody>
</table>
Table 9-1. Measures of success associated with the actions (continued).

<table>
<thead>
<tr>
<th>No.</th>
<th>Action Category</th>
<th>Action Number</th>
<th>Action Short Title</th>
<th>Measure of Usage</th>
<th>Measure of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>13</td>
<td>Trash</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>Trash</td>
<td>Percentage of stream miles / crossings with trash problems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>Trash</td>
<td>Amount of trash removed</td>
<td>Number of volunteers participating</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>Spills</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>Spills</td>
<td>Percentage of spills contained</td>
<td>Pollutant load reductions</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>Spills</td>
<td>Percentage of notifications for uncontained spills</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>Spills</td>
<td>Number of assisted investigations</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>Marine</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>Marine</td>
<td>Number of additional pump-out stations provided</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Bare Soil</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Bare Soil</td>
<td>Total square feet (sf) of area repaired</td>
<td>square feet (sf) of repairs done by private landowners</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Bare Soil</td>
<td>Pollutant load reductions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Stream Banks</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Stream Banks</td>
<td>Total square feet (sf) of area repaired</td>
<td>Pollutant load reductions</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Roads</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Roads</td>
<td>Total square feet (sf) of area repaired</td>
<td>square feet (sf) of repairs done by private landowners</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Roads</td>
<td>Pollutant load reductions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Use Exclusion</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Use Exclusion</td>
<td>Total square feet (sf) of area excluded</td>
<td>square feet (sf) of exclusion done by private landowners</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Use Exclusion</td>
<td>Pollutant load reductions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Sensitive Sites</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Sensitive Sites</td>
<td>Number of sites where controls installed</td>
<td>Number of controls installed by private owners</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Sensitive Sites</td>
<td>Pollutant load reductions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Structural</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Structural</td>
<td>Number of sites where controls installed</td>
<td>Number of controls installed by private owners</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Structural</td>
<td>Pollutant load reductions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Imperviousness</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Imperviousness</td>
<td>Total square feet (sf) of mitigated imp. surface</td>
<td>square feet (sf) of mitigation done by private owners</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Imperviousness</td>
<td>Pollutant load reductions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Infiltration</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Infiltration</td>
<td>Total square feet (sf) of area treated w/ infiltration</td>
<td>square feet (sf) of area treated w/ infiltration by private owners</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Infiltration</td>
<td>Pollutant load reductions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Filtration</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Filtration</td>
<td>Total square feet (sf) of area treated w/ filtration</td>
<td>square feet (sf) of area treated w/ filtration by private owners</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Filtration</td>
<td>Pollutant load reductions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Natural Buffers</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Natural Buffers</td>
<td>Total linear feet (lf) of natural conveyance implemented</td>
<td>linear feet (lf) of natural conveyance implemented by private owners</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Natural Buffers</td>
<td>Total linear feet (lf) of vegetative buffers implemented</td>
<td>linear feet (lf) of vegetative buffer implemented by private owners</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Natural Buffers</td>
<td>Pollutant load reductions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Re-Detention</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Re-Detention</td>
<td>Total square feet (sf) of area subject to redetention</td>
<td>square feet (sf) of area subject to redetention by private owner</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Re-Detention</td>
<td>Pollutant load reductions</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1D Natural Features</td>
<td>Number of additional sources consulted during identification</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Land Reserves</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Land Reserves</td>
<td>Total acres of land protected</td>
<td>Number of inquiries about programs</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>NF Protection</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>NF Protection</td>
<td>Number of protections installed / undertaken</td>
<td>Number of protections installed by private owners</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>NF Restoration</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>NF Restoration</td>
<td>Number of restorations undertaken</td>
<td>Restorations undertaken by private owners</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Recreation Program</td>
<td>Percentage of SWAG members participating</td>
<td>Percentage of SWAG members participating</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Riparian Parks</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Riparian Parks</td>
<td>Percentage of parks established / total acreage</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Access</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Access</td>
<td>Number of landings / access sites added</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>Fishing</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>Fishing</td>
<td>Number of fishing opportunities restored</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>Trails / Decks</td>
<td>Percentage of SWAG members implementing action</td>
<td>Percentage of SWAG members implementing action</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>Trails / Decks</td>
<td>Number of trail miles established</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>Trails / Decks</td>
<td>Number of observation decks constructed</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Guideposts for Achieving Loading Reductions

SEDIMENT
The preferred way to determine if sediment loading reductions are being achieved is to quantitatively analyze water chemistry data.
Alternatively, or in addition to analyzing water quality data, reductions may be qualitatively shown through: improved macroinvertebrate and fish communities; reduced time between dredging; and a decrease in the number/severity of bank erosion problems.

PHOSPHORUS
The preferred way to determine if phosphorus loading reductions are being achieved is to quantitatively analyze water chemistry data.
Alternatively, or in addition to analyzing water quality data, reductions may be qualitatively shown through a reduced prevalence of algae and macrophytes.

PATHOGENS
The preferred way to determine if pathogen loading reductions are being achieved is to quantitatively analyze water chemistry data.
Alternatively, or in addition to analyzing water quality data, reductions may be qualitatively shown through: continued progress in correcting illicit connections; decreased occurrences of sanitary and combined sewer overflows (i.e. SSO, CSOs); and fewer beach closings.

Evaluation Procedure Actions
The actions listed below are designed to ensure that at least the minimum amount of data and assessments are conducted to provide ample evaluation of the WMP and guide revisions to it. They are listed in category ‘9’ to provide consistency between the actions in Chapter 8 and those presented here.

The data collected through these actions should be coordinated with data presented in earlier chapters of this WMP to facilitate temporal analyses of conditions at a variety of locations. Additionally, the monitoring and assessments should be conducted in such a way as to develop relationships between them and a holistic view of a particular area.

9-1 Water Quality Assessment: Existing Monitoring Programs
The SWAG and its members will leverage existing data collection programs to obtain data for assessing water quality. These data will generally be used to document success in Level 4: Load Reductions, Level 5: Changes in Discharge Quality, and Level 6: Changes in Receiving Water Quality (and any measures of success in these levels listed in Table 9-1).

The programs to leverage may include:
- Clinton River Watershed Council (CRWC) benthic macroinvertebrate monitoring;
- County or municipal IDEP;
- County surface water quality monitoring; and
- State/federal water quality monitoring.

Specifically, the data obtained from these programs will be used to assess if the target reductions for stressors (sediment, phosphorus, and pathogens) are being met.

Where appropriate, the SWAG and/or its members should make recommendations to the organizations collecting data to ensure that the data collected is beneficial to the evaluation of this WMP. Specific recommendations for monitoring protocols are listed in Chapter 5.

9-2 Surveys and PEP Data Assessment
SWAG entities are currently involved in numerous surveys and assessments involved with assessing public education activities. The SWAG and its members will continue to leverage these surveys and assessments. If appropriate, the SWAG and/or its members will recommend changes to existing surveys and/or develop new surveys to meet the assessment needs of this WMP. These needs include documenting success at Level 2: Changes in Knowledge and Awareness and Level 3: Changes in Behavior / BMP Implementation - among the public (and addressing any measures of success in these levels - see Table 9-1).

The data and associated assessments may be related to any of the stressors affecting the watershed, but any pollutant load reductions from the actions being assessed through surveys and such are not likely to be quantifiable.
9-3 Program Assessment

SWAG members are currently implementing a portion of the program assessment through documentation provided in the annual reports. The SWAG and its members will enhance the program assessment to include:

- Logging which actions have been started and which have been completed;
- Making calculations (e.g. pollutant load reductions) associated with action implementation;
- Considering the organizational structure of the SWAG and its effectiveness in implementing the actions; and
- Checking the milestones to see if they have been met.

The data generated from these activities will generally be used to document success in Level 1: Compliance with Activity-based Permit Requirements, Level 3: Changes in Behavior / BMP Implementation – among SWAG members, Level 4: Load Reductions (and any measures of success in these levels, and those associated with no level, in Table 9-1).

Table 9-2 presents the details of the evaluation actions. The table lists the actions, comments, schedule, and cost/labor to implement the assessment techniques, and commitments to perform them. The commitment level notation is the same as the notation used in Chapter 8:

- -- = no commitment by the Phase II permittee as the action is not applicable;
- N = no commitment by the Phase II Permittee as the action is not able to be implemented;
- W = no commitment by the Phase II Permittee, but would like to consider implementing the action if funding is acquired;
- Y = Phase II Permittee commits to the action;
- E = Phase II Permittee commits to the action and is already doing it in some capacity; and
- D = Phase II Permittee commits to the action and has already completed it.

Field Data Collection for Developing the Plan: Unified Stream Assessment

Photo courtesy of MCPWO.
### Table 9-2. Evaluation action details.

<table>
<thead>
<tr>
<th>Number</th>
<th>Action Category</th>
<th>Action Title</th>
<th>Comments</th>
<th>Schedule</th>
<th>Estimated Costs</th>
<th>Commitment Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Water Quality Assessment: Leverage Existing Monitoring Programs</td>
<td>Annually 200-400 annual</td>
<td>E E W Y N Y YY - E W Y Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Surveys and PEP Data Assessment</td>
<td>Annually $10,000 200-400 annual</td>
<td>Y Y W W N Y Y YY - W W Y N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Program Assessment</td>
<td>Annually 100-200 annual</td>
<td>E E C Y N Y Y YY - E C Y Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Although currently holding separate permit, Lakeview Public Schools is currently pursuing nested jurisdiction status under Macomb County’s permit

### Implementation Milestones

This sub-section lists out and expands upon the implementation milestones initially addressed in Chapter 8. The milestones are presented to gauge progress and are not meant to indicate commitments for any of the actions, as many of the actions are highly dependent on the availability of funding that the SWAG and its members have limited control over.

The primary function of the milestones is to act as a mechanism for guiding realistic revisions to actions and schedules in future versions of this WMP. Commitments to actions by the permittees are detailed in Tables 8-2 and 9-2. However, the milestones associated with Phase II requirements are highlighted textually for cross-referencing purposes.

**Year** | **Milestone**
--- | ---
**By 2007** | **Action 1-5: Update SWPPI**
As a Phase II requirement, each permittee will have submitted a Storm Water Pollution Prevention Initiative (SWPPI) that considers the contents of this WMP by the date listed in their respective certificates of coverage.

**Action 1-2: Evaluation and Revision Procedure**
If this action has been implemented (above and beyond the Phase II requirement to include ‘progress evaluation mechanisms’ in the WMP – which is met by the contents of this chapter), the SWAG will have formalized the Evaluation and Revision Procedure in consideration of any conditions that have changed since 2006.

**By 2008** | **Action 1-6: Update WMP**
As a Phase II requirement, the SWAG will have developed and submitted an updated WMP or provided a written determination not to update the WMP to the MDEQ by November 1st, 2008.

**By 2009** | **Action 1-5: Update SWPPI**
As a Phase II requirement, each permittee will have submitted a Storm Water Pollution Prevention Initiative (SWPPI) by the date listed in their respective certificate of coverage.
By 2010

**Action 1-1: Promote and Reconvene SWAG**
If the action has been implemented, the SWAG will have agreed on and implemented a mechanism for long term implementation of the WMP.

If the action has been implemented, the SWAG will have increased participation and meeting attendance over levels documented at the time of submittal of the plan.

**Action 1-9: Implementation Clearinghouse**
If the action has been implemented, the SWAG will have developed an implementation clearinghouse which effectively logs actions taken and allows members to easily obtain implementation information.

**Action 1-10: Pollutant Source Identification**
If the action has been implemented, the SWAG will have completed a pollutant source identification that can be used to implement many other actions in the WMP.

**Action 2-5: Signage**
If the action has been implemented, those SWAG members participating will have installed ample signage to further achievement of the appropriate goals and objectives of the WMP.

**Action 2-6: Public Involvement**
If the action has been implemented, those SWAG members participating will have conducted public involvement activities in a more ambitious schedule than existed at the time of submittal of this WMP and will have provided opportunities for a greater segment of the population to become involved.

**Action 2-7: Community Forums & Stakeholder Wkshps.**
If the action has been implemented, those SWAG members participating will have conducted public meetings in a more ambitious schedule than existed at the time of submittal of this WMP and will have provided opportunities for a greater segment of the population to become involved.

**Action 2-8: Municipal Officials’ Involvement and Educ.**
If the action has been implemented, those SWAG members participating will have educated municipal officials in a more ambitious schedule than existed at the time of submittal of this WMP and utilizing educational agendas with a greater scope of information.

**Action 4-1: Identify Sources of Sediment Contaminants**
If the action has been implemented, the SWAG will have completed an identification of sources of sediment contaminants that can be used to implement many other actions in the WMP.

**Action 4-2: Identify Actions to Remediate Contaminated Sediments**
If the action has been implemented, the SWAG will have completed an identification of the actions necessary to remediate contaminated sediments that can be used to implement many other actions in the WMP.

**Action 4-13: Trash/Debris Reduction**
If the action has been implemented, those SWAG members participating will have implemented a program to identify and clean-up areas of excessive trash in the subwatershed.

**Action 4-14: Spill Prevention / Notification / Response**
If the action has been implemented, those SWAG members participating will have implemented a spill prevention, notification, and response program that reduces pollution to a degree that is greater than what would have been expected at the time of submittal of this WMP.

**Action 7-1: Identify Natural Features**
If the action has been implemented, the SWAG will have conducted an identification of natural features that can be used to implement other actions of the WMP.
By 2013

**Action 2-3: Municipal Employee Training**
Each of the permittees committing to this action as a Phase II requirement, or other SWAG members implementing this action, will participate in, or have in place, a program that regularly trains all employees on pollution reducing measures to be utilized during regular job performance.

**Action 3-1: Stormwater Management Standards**
Each of the permittees committing to this action as a Phase II requirement, or other SWAG members implementing this action, will have researched and adopted measures to manage stormwater from areas new development and significant redevelopment.

**Action 3-2: Managing Development Patterns**
Each of the permittees committing to this action as a Phase II requirement, or other SWAG members implementing this action, will have researched and adopted measures to manage development patterns such that new development and significant redevelopment occur in such a way as to lessen environmental impacts in comparison to traditional development.

**Action 3-3: Preserve Natural Areas / Features**
Each of the permittees committing to this action as a Phase II requirement, or other SWAG members implementing this action, will have researched and adopted measures to preserve natural areas and features by protecting them from destruction or the undesirable impacts of traditional development practices.

**Action 3-4: Preserve Natural Areas / Features**
If the action has been implemented, those SWAG members participating will have enacted and/or instituted ordinances and programs to increase the level of pollution prevention to a greater degree than was in place at the time of submittal of this WMP. Each of the permittees committing to this action as a Phase II requirement (as a component of, or in lieu of an action from category 4), will also have enacted and/or instituted programs to increase the level of pollution prevention.

**Action 4-3: Storm Sewer Maintenance and Operations**
Each of the permittees committing to this action as a Phase II requirement, or other SWAG members implementing this action, will have defined procedures for the maintenance and operations of the storm sewer system that reduce pollutant discharges.

**Action 4-4: Minimizing Pollution from Roads and Lots**
Each of the permittees committing to this action as a Phase II requirement, or other SWAG members implementing this action, will have defined procedures for the minimization of pollutant discharges from streets, roads, highways, and parking lots.

**Action 4-5: Minimizing Pollution from Municipal Facilities**
Each of the permittees committing to this action as a Phase II requirement, or other SWAG members implementing this action, will have defined procedures for the minimization of pollutant discharges from municipal facilities.

**Action 4-6: Turf Management Practices**
Each of the permittees committing to this action as a Phase II requirement, or other SWAG members implementing this action, will have defined procedures for turf management that minimize the discharge of pollutants such as pesticides, herbicides, and fertilizers.

By 2015

**Action 1-8: Total Maximum Daily Loads**
As a Phase II requirement, the SWAG will have incorporated all completed TMDLs (currently scheduled through 2012) into the regularly scheduled WMP updates.

**Action 1-5: Demonstration Projects**
If the action has been implemented, those SWAG member participating will have at least identified one demonstration project and begun preliminary activities towards completing it.

**Action 4-7: Waste Management**
If the action has been implemented, those SWAG members participating will have implemented or augmented existing waste management programs such that pollution potential from waste or the collection infrastructure is reduced to a level below that which existed when the WMP was submitted.
Action 4-8: Animal Waste Control
If the action has been implemented, those SWAG members participating will have implemented or augmented existing animal waste control facilities or programs such that pollution potential from animal waste is reduced to a level below that which existed when the WMP was submitted.

Action 4-9: Sanitary / Combined Sewer Planning and Maintenance
If the action has been implemented, those SWAG members participating will have engaged in the planning of and/or defined maintenance procedures for, the sanitary/combined sewer system such that pollutant discharges are reduced to a level that is lower than at the time of submittal of this WMP.

Action 4-10: Flood Control Projects
Each of the permittees committing to this action as a Phase II requirement, or other SWAG members implementing this action, will have defined mechanisms for ensuring that flood control projects are assessed for water quality impacts and incorporate all reasonable measures to reduce these impacts.

Action 4-12: Septic System Practices
If the action has been implemented, those SWAG members participating will have implemented various mechanisms and programs to ensure that the pollutant discharges from septic systems as a whole is reduced to level lower than that which existed at the time of submittal of this WMP.

Action 4-15: Marine Industry Practices
If the action has been implemented, those SWAG members participating will have taken steps to reduce the pollution potential from marine activities to a level lower than that which existed at the time of submittal of this WMP.

Actions 5-1 through 5-6: Non-Construction Related Soil Erosion and Sediment Control
The SWAG and/or its members will have implemented some combination of these actions such that at least 20% of the sediment loading reduction target is being achieved (also considering reductions from previously implemented actions from other categories).

By 2020

Actions 6-1 through 6-5: Other Pollutant Load Reducing Controls
The SWAG and/or its members will have implemented some combination of these actions such that at least 40% of the sediment loading reduction target and 20% of the other reduction targets are being achieved (also considering reductions from previously implemented actions from other categories).

Action 7-2: Natural Land Reserves
If the action has been implemented, those SWAG members participating will have preserved at least one parcel of natural land.

Action 7-3: Natural Feature Protection
If the action has been implemented, those SWAG members participating will have implemented programs or completed projects such that natural features are protected to an extent greater than at the time this WMP was submitted.

Action 7-4: Natural Feature Restoration
If the action has been implemented, those SWAG members participating will have implemented programs or completed projects such that natural features have been restored to a condition greater than that which existed at the time this WMP was submitted.

By 2025

Actions 8-1 through 8-5: Recreation Promotion and Enhancement
If these actions have been implemented, the participating SWAG members will have increased recreational opportunities in the subwatershed to a level greater than that which existed at the time of submittal of this WMP.
Guidance for Revision of the WMP

The SWAG will be updating this WMP regularly for both regulatory purposes and to reflect changing conditions in the subwatershed. The following sub-sections discuss some of the revision options available.

Integrated Assessment

The SWAG and/or its members may wish to implement some form of integrated assessment to look at all collected data holistically and help guide any WMP revisions. The integrated assessment may involve:
- Examining collected data and related assessments to identify gaps in the data;
- Looking for causal relationship between the actions taken and the results documented; and
- Examining the goals and objectives (see Table 9-3) for achievement status, modification, omission, or addition.

Other Data and Assessments

The SWAG and/or its members may wish to collect additional data or implement other assessments that they deem to be necessary to successful watershed management planning. Examples of possible activities are presented in Chapter 7. Such activities should be added to the evaluation procedure actions in this chapter.

Final Recommendations for WMP Modification

The SWAG and/or its members may wish to summarize recommendations for changes to the WMP (to assist in implementing Action 1-6) based on collected data, associated assessments, and the findings of such assessments. Recommendations may include:
- Updating actions to reflect current implementation levels;
- Modifying goals and objectives;
- Modifying actions; and
- Modifying evaluation mechanisms and monitoring protocols.

Goals and Objectives Evaluation

In addition to evaluating the actions, it is also beneficial to ask some general questions with respect to the goals / objectives, as presented in Table 9-3. The answers to these questions will assist in determining the progress being made toward achieving the goals / objectives. This progress helps define the changes to be made to the WMP, when revised.

References

Table 9-3. Goals and Objectives evaluation questions.

<table>
<thead>
<tr>
<th>Goal / Objective</th>
<th>Evaluation Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Goal I: Protect water quality and reduce pollution</strong></td>
<td></td>
</tr>
<tr>
<td>A. Address existing and future contaminated sediments.</td>
<td>Are parts (i) and (ii), below, being addressed?</td>
</tr>
<tr>
<td>i. Identify feasible actions to remEDIATE existing contaminated sediments.</td>
<td>Has Action 4-2 been completed?</td>
</tr>
<tr>
<td>ii. Identify and implement pollution prevention activities for current and future sources.</td>
<td>Has Action 4-1 been completed?</td>
</tr>
<tr>
<td>B. Reduce the amount of phosphorus and excessive algae.</td>
<td>Are parts (i) and (ii), below, being addressed?</td>
</tr>
<tr>
<td>i. Identify sources of phosphorus.</td>
<td>Has Action 5-1 been completed?</td>
</tr>
<tr>
<td>ii. Identify and implement management practices to limit phosphorus.</td>
<td>Have BMPs been implemented under Action Groups 4, 5, or 6 that specifically reduce nutrient and BOD loadings?</td>
</tr>
<tr>
<td>C. Reduce the amount of sediment</td>
<td>Are parts (i) and (ii), below, being addressed?</td>
</tr>
<tr>
<td>i. Identify sources of sediment.</td>
<td>Has Action 1-10 been completed?</td>
</tr>
<tr>
<td>ii. Identify and implement management practices to limit sediment loadings.</td>
<td>Have BMPs been implemented under Action Groups 4, 5, or 6 that specifically reduce nutrient and BOD loadings?</td>
</tr>
<tr>
<td>D. Reduce amount of pathogens.</td>
<td>Are parts (i), (ii), and (iii), below, being addressed?</td>
</tr>
<tr>
<td>i. Identify and address failing septic systems.</td>
<td>Has Action 4-12 been implemented?</td>
</tr>
<tr>
<td>ii. Identify and address illicit connections.</td>
<td>Has Action 4-II been implemented?</td>
</tr>
<tr>
<td>iii. Identify stormwater management techniques to reduce other nonpoint source pathogen loadings and implement techniques where practical.</td>
<td>Have BMPs been implemented under Action Groups 4, 5, or 6 that specifically reduce pathogen loadings?</td>
</tr>
<tr>
<td><strong>Goal II: Provide and promote public education to raise awareness and change behavior</strong></td>
<td></td>
</tr>
<tr>
<td>A. Increase the public’s level of awareness about watershed problems and management activities.</td>
<td>Are objectives (A), (B), and (C), below, being addressed?</td>
</tr>
<tr>
<td>i. Develop and utilize existing outreach materials using messages and formats tailored to specific target audiences.</td>
<td>Have Actions 2-1, 2-2, 2-3, 2-5, and 2-8 been implemented?</td>
</tr>
<tr>
<td>ii. Provide hands-on, interactive learning opportunities focused on watershed concepts tailored to specific target audiences.</td>
<td>Have Actions 2-1, 2-2, 2-4, 2-6, and 2-7 been implemented?</td>
</tr>
</tbody>
</table>
Table 9-3. Goals and Objectives evaluation questions. (continued)

<table>
<thead>
<tr>
<th>Goal / Objective</th>
<th>Evaluation Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Increase the public’s understanding of steps to take to improve water quality.</td>
<td>Are parts (i) and (ii), below, being addressed? Do survey results indicate that the public is understanding the steps needed to improve water quality?</td>
</tr>
<tr>
<td>i. Ensure existing outreach materials focused on positive actions to improve water quality reach key target audiences.</td>
<td>Have Actions 2-1, 2-2, 2-3, 2-5, and 2-8 been implemented?</td>
</tr>
<tr>
<td>ii. Provide hands-on learning opportunities for key target audiences that address specific behaviors and pollutants of concern.</td>
<td>Have Actions 2-1, 2-2, 2-4, and 2-7 been implemented?</td>
</tr>
<tr>
<td>C. Produce measurable changes in the public’s behaviors that negatively impact water quality.</td>
<td>Are parts (i) and (ii), below, being addressed? Do survey results indicate that behaviors in the public that negatively impact water quality are decreasing?</td>
</tr>
<tr>
<td>i. Develop and utilize existing social marketing programs that target specific polluting behaviors in specific target audiences.</td>
<td>Have Actions 2-1, 2-2, 2-3, 2-5, and 2-8 been implemented?</td>
</tr>
<tr>
<td>ii. Conducting evaluations of outreach and social marketing activities to assess effectiveness over time.</td>
<td>Have Actions 1-2 and 1-9 been implemented?</td>
</tr>
<tr>
<td>Goal III: Protect and enhance sustainable recreational opportunities</td>
<td>Is objective (A), below, being addressed?</td>
</tr>
<tr>
<td>A. Increase opportunities for water-based recreation.</td>
<td>Are parts (i), (ii), and (iii), below, being addressed?</td>
</tr>
<tr>
<td>i. Educate the public about the potential dangers and health risks associated with water-based recreational activities.</td>
<td>Has Action 2-2 been implemented?</td>
</tr>
<tr>
<td>ii. Educate public about inland parks and recreational lands near open drains to help make residents more aware of the potential effect they have on the lake</td>
<td>Have Actions 2-2, 8-1, 8-3, and 8-5 been implemented?</td>
</tr>
<tr>
<td>iii. Increase recreational opportunities through additional programs / facilities and enhance public access to existing facilities.</td>
<td>Have Actions 8-1 through 8-5 been implemented?</td>
</tr>
<tr>
<td>iv. Ensure water is safe for partial and total body contact recreational activities</td>
<td>Are partial and total body contact recreation impaired for any waterbodies in the subwatershed? Have BMPs been implemented under Action Groups 3, 4, or 6 that specifically target the sources and causes of existing or potential future recreational impairments?</td>
</tr>
<tr>
<td>Goal IV: Minimize local stakeholder impacts and restore and enhance fisheries, aquatic life, wildlife and associated habitat</td>
<td>Is objective (A), below, being addressed?</td>
</tr>
<tr>
<td>A. Increase the amount of desired suitable habitat to support aquatic life, wildlife, and fisheries.</td>
<td>Are parts (i) and (ii), below, being addressed?</td>
</tr>
<tr>
<td>i. Identify high-quality habitat in need of protection.</td>
<td>Have Actions 3-3 and 7-1 been implemented?</td>
</tr>
<tr>
<td>ii. Identify targeted areas with habitat in need of restoration.</td>
<td>Have Actions 3-3 and 7-4 been implemented?</td>
</tr>
<tr>
<td>Goal V: Reduce impact of runoff through effective storm water management</td>
<td>Are objectives (A), and (B), below, being addressed?</td>
</tr>
<tr>
<td>A. Reduce impacts from urban stormwater runoff.</td>
<td>Is part (i), below, being addressed?</td>
</tr>
<tr>
<td>i. Identify and implement best management practices to effectively manage quantity and quality of urban stormwater.</td>
<td>Have BMPs been implemented under Action Groups 3, 5, or 6 that specifically reduce nutrient and BOD loadings?</td>
</tr>
</tbody>
</table>
### Table 9-3. Goals and Objectives evaluation questions. (continued)

<table>
<thead>
<tr>
<th>Goal / Objective</th>
<th>Evaluation Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Reduce urban stormwater contributions leading to CSOs and SSOs.</td>
<td>Is part (i), below, being addressed?</td>
</tr>
<tr>
<td>i. Identify and implement best management practices to effectively manage quantity and quality of urban stormwater that will promote reduction of CSO and SSO frequency.</td>
<td>Have BMPs been implemented under <em>Action Groups</em> 3, 4, or 6 that specifically manage quantity and quality of urban stormwater?</td>
</tr>
<tr>
<td>Goal VI: Seek out opportunities to sustain implementation of the plan</td>
<td>Are objectives (A), and (B), below, being addressed?</td>
</tr>
<tr>
<td>A. Increase funding available for implementation.</td>
<td>Are parts (i), (ii), and (iii), below, being addressed?</td>
</tr>
<tr>
<td>i. Identify existing federal, state, and local funding opportunities.</td>
<td>Has Action 1-3 been implemented?</td>
</tr>
<tr>
<td>ii. Coordinate the development of grant proposals.</td>
<td>Has Action 1-4 been implemented?</td>
</tr>
<tr>
<td>iii. Identify private sector funding opportunities</td>
<td>Has Action 1-3 been implemented?</td>
</tr>
<tr>
<td>B. Institutionalize the plan and the advisory group.</td>
<td>Are parts (i) and (ii), below, being addressed?</td>
</tr>
<tr>
<td>i. Identify and adopt a mechanism for ensuring the advisory group continues its activities in the future.</td>
<td>Has Action 1-1 been implemented?</td>
</tr>
<tr>
<td>ii. Identify and adopt a mechanism for ensuring the plan is implemented, updated, and revised in the future.</td>
<td>Have Actions 1-1, 1-2, 1-3, 1-5, 1-6, 1-7, and 1-9 been implemented?</td>
</tr>
<tr>
<td>Additional / Revised Goals?</td>
<td>Have any additional goals been identified for inclusion in the plan? Do any goals need to be eliminated or revised?</td>
</tr>
<tr>
<td>Additional / Revised Objectives?</td>
<td>Have any additional objectives been identified for inclusion in the plan? Do any objectives need to be eliminated or revised?</td>
</tr>
</tbody>
</table>
10. Plan Institutionalization

Introduction

Institutionalization involves defining a mechanism to implement the WMP once it is complete, including essential adaptive management measures such as provisions for updating and improving the plan. Defining the actual mechanism will involve researching the myriad alternatives that are available and evaluating how successful the implementation is under the current mechanism. This research and evaluation will occur over the first four years after submittal of this WMP (see Action 1-1 in Chapter 8).

Additionally, regardless of the mechanism that is chosen, the inner workings of a cooperative approach must be defined.

The purpose of this chapter is to first define these inner workings, provide options for the institutionalization mechanism, and then explore how these options and some additional programs can fund implementation of the WMP.

The information in this chapter is not exhaustive. The focus is on the enabling statutory provisions most likely to be used. While SWAG members are likely to focus on programs related to the new regulations for addressing pollution from stormwater, the information in this report includes other water quality initiatives.

In large part, the latter sections of this chapter are an updating and reorganization of the Southeast Michigan Council of Governments’ (SEMCOGs) Options for Local Government Funding of Water Quality Activities (2003).

Structure

The development of this WMP has occurred under the direction of a voluntary group structure known as a subwatershed advisory group (SWAG) – see Chapter 1.

It is expected that this structure will guide the implementation of the WMP over the four years following submittal of this WMP. During this time, the SWAG will evaluate how the current structure is able to implement the plan. Specifically, how voluntary membership with ad hoc committees can implement and track the various actions and results and the ability for the SWAG to get the members to act as a watershed as opposed to isolated and independent actors.

SWAG Structure

Some of the actions in the WMP may be implemented by the SWAG at large. Others may be solely actions of the individual entities with little or no SWAG involvement. However, some of the actions may require focused attention of members within the SWAG to provide a coordinated watershed approach. This has been, and will continue to be, (at least for the first four years), dealt with through the formation of ad hoc committees that meet for specific purposes for a set period of time.

The members of each committee, including the chairperson, will be determined at the SWAG meeting in which the committee is formed. Each subsequent SWAG meeting will include updates from the existing committees, including membership and chairperson issues.
Some recommendations for the committees that may be utilized to implement the actions of the WMP are addressed in the following topics.

**Implementation and Evaluation Committee**
This committee may oversee: the implementation of some of the planning actions (Action Group 1 – see Chapter 8), the integration of much of the data collected as part of the WMP evaluation process, the analysis of the data (measures of completion, usage/attainment, and change), and making recommendation for modifications to the WMP and other documents derived from the WMP, as appropriate (see Chapter 9).

**Ordinance/Standards Committee**
This committee may provide guidance for: development of language for ordinances, standards, and pollution prevention programs (Action Group 3 – see Chapter 8); review of existing ordinances, standards, and programs of the individual SWAG members; and recommendations for each SWAG member to make to appropriately implement an action.

**Technical Guidance Committee**
This committee may be responsible for: providing technical guidance for the planning and implementation of pollution prevention activities (Action Group 4 – see Chapter 8) and stormwater BMPs (Action Groups 5 and 6 – see Chapter 8), and providing technical guidance to SWAG members or other committees to help them fully implement other actions.

**Public Education Committee**
This committee may be responsible for planning and implementing portions of the public education and participation actions (Action Group 2 – see Chapter 8).

**Budget and Funding Committee**
This committee may be charged with developing the funding plan for SWAG operations (Action 1-3 – see Chapter 8) and handling requests from SWAG members as to the appropriate funding considerations to explore.

**Conservation/Recreation Committee**
This committee may be in charge of developing programs and implementing actions related to conservation and recreation (Action Groups 7 and 8, respectively – see Chapter 8).

**Cooperative Involvement**
Because this WMP has been developed in conjunction with two other WMPs (Red Run Subwatershed and Clinton River East Subwatershed), many of the actions between the plans are similar. As such, and because some of the SWAG members are involved in multiple plans, the SWAG will explore operating ad hoc committees singly for all three of the subwatersheds. At least one member from each subwatershed should participate in each committee to ensure that the goals and objectives of each distinct subwatershed are being adequately addressed.

Additionally, other subwatershed groups in Southeast Michigan should be contacted for input and/or involved in SWAG and committee activities. This will be encouraged to ensure that actions, especially those required of SWAG members represented in a subwatershed (or subwatersheds) outside of the primary three, will be coordinated and effective as possible without being overly burdensome.
Legal Relationships

Considering various methods for institutionalization is a critical component of this WMP and to sustain the SWAG’s effort to-date. It is especially important for those SWAG members submitting this plan for Phase II Watershed-based Permit compliance.

Michigan has a number of different methods available for the SWAG to form into a legal entity. At least seven approaches are available under Michigan statutes to lead and assign funding responsibilities for WMP implementation. These options include the following:

1) Drain Code – Public Act 40 (1956);
2) County Department and Board of Public Works – Public Act 185 (1957);
3) Inter-Municipal Committee Act – Public Act 200 (1957);
4) Municipal Sewerage and Water Systems - Public Act 233 (1955);
5) County Public Improvement Act – Public Act 342 (1939);
6) Watershed Alliance Act – Public Act 517 (2004); and
7) Voluntary Cooperation.

Table 10-1 provides a brief summary of each of these options, how each of these options can be used (including a working example in the state, if possible), and some advantages or disadvantages for using each option. Any of these options could be used independently or in combination to handle a specific project area.

Funding

When looking to cooperatively implement the WMP, it is important to consider how costs will be divided and paid. A common method for funding allocations is to use a formula that is a function of land area and population. Funding formulas based on other factors include, number of parcels, impervious area, land use, diversity of development, opportunity for new development, and community resources. Furthermore, not every task must use the same formula. Different work initiatives may use different formulas. For example, funding allocations for illicit discharge elimination program (IDEP) may be based on land area and the number of outfalls, whereas funding for public education may be based on population.

Independent of which allocation approach is selected is the issue of raising the funds to pay for the activity. Local governments have three basic means of raising revenues – special assessments, taxes, and fees.

Special Assessments

Special assessments are assessments imposed on real property which benefits especially from a government expenditure or service. Special assessments are limited in amount to no more than the increase in value which the real property gains because of the expenditure. Local street and sewer projects are often paid for by special assessments on the real property served by the street or sewer.
Table 10-1. Legal relationship options.

<table>
<thead>
<tr>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>The Drain Code</strong></td>
<td><strong>PA 40(1956).</strong> The watershed drainage district created under chapter 20 could include an area within a single municipality or more than one municipality, depending upon the type of agreement to be used. A watershed drainage district established under the Drain Code petition process can be accompanied by a contract between the municipality and the Drainage Board through the execution of an agreement under section 471 or 491. These agreements would describe the services the Drainage Board would provide for each community in the drainage district, identify the process of assessing charges for those services, and establish a mechanism for identifying and approving needed projects. In the case of a section 471 agreement, a watershed committee would be established with a representative from each municipality in the drainage district. Before a proposed project could go to the Drainage Board for consideration, it would need the approval of the watershed committee. Each municipality in the watershed drainage district would be apportioned their share of the cost of the projects. Municipalities could cover their costs either through their general fund or levy those costs to the individual properties within the drainage district through ad valorem taxes, rates/fees, or special assessments.</td>
</tr>
<tr>
<td><strong>Public Works Act</strong></td>
<td><strong>PA 185(1957).</strong> Gives county departments of public works broad authority to provide a range of services, including the collection and transport of stormwater. These county departments may also contract with other units of government to provide specific facilities or services. Funding mechanisms for these services includes property taxes, special assessments, and user charges/rates.</td>
</tr>
<tr>
<td><strong>Inter-Municipal Committee</strong></td>
<td><strong>PA 200(1957).</strong> Allows participating municipalities to adopt resolutions for the establishment of a study committee. Funding is provided by the participating municipalities. However, activities of the committee are limited to study and planning. Construction, operation, maintenance of facilities or implementation of projects beyond studies is not permitted under this legislation.</td>
</tr>
<tr>
<td><strong>Municipal Sewerage &amp; Water Syst.</strong></td>
<td><strong>PA 233(1955).</strong> Municipalities can jointly create an Authority which then contracts with individual municipalities to provide specific facilities or services. Once established, activities of the Authority are limited to those related to owning and operating a sewage disposal system, including storm sewers. Contracting municipalities use a variety of mechanisms to pay for the facilities or services they receive from the Authority, including property taxes, special assessments, and user charges/rates. PA 233 authorities can issue bonds for capital improvements.</td>
</tr>
<tr>
<td><strong>County Public Improvement Act</strong></td>
<td><strong>PA 342(1939).</strong> For purposes of water quality activities, this legislation is similar to the Public Works Act. It authorizes the County Board of Commissioners to designate a county agency to provide specific services, including the collection and transport of stormwater. County agencies eligible to serve as the designated agency include the Board of Public Works, Road Commission, or Drain Commissioner. Rates, charges, or assessments are paid based on the facilities or services provided and the agency can contract with other units of government for the cost of such facilities or services. Again, property taxes, special assessments, and user charges/rates can be used by the contracting governments to pay for the facilities or services they receive.</td>
</tr>
<tr>
<td><strong>Watershed Alliance Act</strong></td>
<td><strong>PA 517(2004).</strong> Two or more communities can form a watershed alliance if they adopt bylaws with the approval of the governing body. Through by-laws, Alliances establish boundaries, assessments to members, structure, and decision-making process. The law provides for authority to receive grant funding, manage its own money, contract its own staff and services, and implement plans and projects. Alliances can not levy taxes or assess individuals, businesses, or property. They do not have the authority to regulate or issue permits. Membership is voluntary and can include municipalities, counties, school districts, colleges and universities, or other local or regional public agencies.</td>
</tr>
<tr>
<td><strong>Voluntary Cooperation</strong></td>
<td>It is possible to work voluntarily without any contracts or legal agreements. To accomplish this, affected units of government must voluntarily agree to work together cooperatively. This requires trust and accountability. There are many different ways to implement a cooperative agreement, with reliance upon committees being one of the dominant structures. Different structures can be considered prior to organizing a committee. Regardless of what structure is decided upon, leadership is a critical component. Some committees elect chairman, others have series of subcommittees. Many committees use Roberts Rules of Order to manage committee operations.</td>
</tr>
</tbody>
</table>
Table 10-1. Legal relationship options. (rows continue across from previous page)

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Flexibility in paying apportioned share (property taxes, rates/fees,</td>
<td>• Petition needs to be carefully drafted to include implementation activities.</td>
</tr>
<tr>
<td>special assessments, or general fund); such property taxes may not be</td>
<td>• Agreements with multiple municipalities can be difficult and time consuming.</td>
</tr>
<tr>
<td>subject to the Headlee Amendment.</td>
<td>• May limit the role of local government in decision making.</td>
</tr>
<tr>
<td>• Define the scope of the work to be performed, responsibilities, active</td>
<td></td>
</tr>
<tr>
<td>participation by local governments and various agencies involved; allows</td>
<td></td>
</tr>
<tr>
<td>for use of in-kind services in lieu of cash payments.</td>
<td></td>
</tr>
<tr>
<td>• Allows use of various funding mechanisms.</td>
<td>• Absent companion agreements, may limit the role of local government in decision making.</td>
</tr>
<tr>
<td>• Simple to start.</td>
<td>• For study purposes only.</td>
</tr>
<tr>
<td>• Municipal support can be funds or in-kind services, equipment, etc.</td>
<td></td>
</tr>
<tr>
<td>• Allows use of various funding mechanisms.</td>
<td>• Creates a separate authority.</td>
</tr>
<tr>
<td>• Can provide services to non-member municipalities at same or greater fee.</td>
<td>• Primarily intended for water and wastewater services, but can include stormwater.</td>
</tr>
<tr>
<td>• Contracts between county and municipality(ies) are subject to a right</td>
<td>• Contracts between county and municipality(ies) are subject to a right of referendum.</td>
</tr>
<tr>
<td>of referendum.</td>
<td></td>
</tr>
<tr>
<td>• Allows use of various funding mechanisms.</td>
<td>• Absent companion agreements, may limit the role of local government in decision making.</td>
</tr>
<tr>
<td>• Specifically written to allow communities to undertake water quality</td>
<td>• Contracts between the county and participating municipality(ies) are subject to a right of referendum.</td>
</tr>
<tr>
<td>activities.</td>
<td></td>
</tr>
<tr>
<td>• Allows for the planning/design and implementation of multi-jurisdictional</td>
<td></td>
</tr>
<tr>
<td>projects.</td>
<td></td>
</tr>
<tr>
<td>• Can receive and administer external funding.</td>
<td></td>
</tr>
<tr>
<td>• Equitable membership.</td>
<td></td>
</tr>
<tr>
<td>• Auditing of finances required by State.</td>
<td></td>
</tr>
<tr>
<td>• Raising revenue is each community’s responsibility which allows for</td>
<td>• Still must submit separate permits, IDEPs, SWPPIs, etc.</td>
</tr>
<tr>
<td>flexible approaches.</td>
<td>• Does not solve the funding problem.</td>
</tr>
<tr>
<td>• Direct relationship between cost and benefit to each community.</td>
<td></td>
</tr>
<tr>
<td>• Requires trust and individual accountability.</td>
<td></td>
</tr>
<tr>
<td>• Absence of leadership can limit implementation.</td>
<td></td>
</tr>
<tr>
<td>• Not a reliable stream of funding.</td>
<td></td>
</tr>
</tbody>
</table>
Taxes
Local governments’ power to tax is limited to those taxes expressly authorized by constitution or statute. Local government taxing authority is primarily limited to ad valorem taxes on real and personal property and to personal income tax. The rate of these taxes is also limited by statute. In general, local governments do not have the authority to tax on any other basis and cannot impose a sales tax or a tax on consumption like state and federal taxes on gasoline. Thus, a local government does not have the authority to impose a tax on sewer or water use in order to pay for providing those services. Taxes may be imposed to raise revenues for general governmental purposes or for specific projects or objects. The Headlee Amendment requires a local vote of approval for any tax not authorized by law at the time the amendment was enacted. In addition, some authorizing statutes also require a local vote before a tax is imposed under certain circumstances.

A recent SEMCOG study (Land Use Change in Southeast Michigan: Causes and Consequences, March 2003) has shown that because Proposal A limits taxable value increases for properties remaining in the same ownership to five percent or the rate of inflation, whichever is less, communities without much land available for development are severely limited in taxable value growth. Without new construction to bring more State Equalized Valuation (SEV) and its full taxable value, municipal revenues from ad valorem taxes often do not keep pace with increases in SEV.

Fees
Fees are charges for services offered or carried out pursuant to a local government’s “police” power, meaning government’s authority to undertake or regulate actions to promote public health, safety, and welfare. Building inspection fees paid for city building inspection services conducted as a part of the city’s program to maintain safe housing are one example of a fee. The Bolt decision, together with many other court decisions, puts bounds on the circumstances under which a local government can impose a valid fee. Because fees are the most common method in Michigan for financing the provision of safe drinking water and sewerage services, any changes in the law which affect how a local government can impose a fee are of great import to both a local government and its residents.

Summary of Funding Mechanisms
This subsection discusses in more detail the possible taxes, special assessments, and fees that can be used to generate funding. Also included are appropriate grant programs. The mechanisms include:

1) Stormwater Utility;
2) Sewer Rates;
3) Special Assessment;
4) Natural Resources and Environmental Protection Act;
5) Revised Municipal Finance Act (RMFA);
6) User Fees / Charges;
7) State Revolving Fund; and
8) Other State Revolving Fund; and
9) Other State grant and loan programs, which may validly be used for the contracted purpose.

The individual mechanisms are presented in Table 10-2.

Legal Issues
In the Bolt decision, the court established a three-part test for distinguishing a valid user fee from a tax:

- The fee must serve a regulatory purpose rather than a revenue raising purpose.
- A user fee must be proportionate to the necessary costs of the service.
- A user fee must be voluntary – users must be able to refuse or limit their use of the commodity or service.

These criteria are being used to distinguish whether a government-imposed charge is a fee or a tax. As noted above, this distinction is important because there are constitutional and statutory limitations on a government’s authority to impose taxes. A charge which is determined to be a tax is subject to those limitations. The Bolt decision and subsequent court decisions have far reaching implications for both state and local governments. While the Bolt case dealt with a fee imposed by a local government for a sewer project, the fee versus tax test laid out by the Bolt court has been applied in a number of cases beyond water and sewer fees at both the state and local level. The result of the Bolt decision has been a lack of necessary certainty and predictability with regard to using fees as a mechanism to fund the provision of essential governmental services.

Currently there is a legislative proposal being developed that will assist in the creation of stormwater utilities.
Implementation and Funding

SWAG members are faced with implementing a wide range of actions associated with this WMP. While many of these are related to compliance with the Watershed-based Permit, others, such as recreation enhancement are not. With the recognition that land use activities directly impact water quality, SWAG members are now faced with a broad range of new water quality responsibilities, particularly those that are experiencing significant development pressure.

In this chapter, the actions to be taken by SWAG members are grouped into two different categories: 1) planning and program implementation activities and 2) capital projects. The first category includes activities such as development of a stormwater management plan and implementation of non-capital programs (e.g. public education programs and ordinance development and enforcement). Planning and program implementation activities are on-going in nature, and, for the most part, do not require the outlay of large financial resources. Nonetheless, they do require a commitment to long-term, stable sources of funding. Capital projects, on the other hand, are usually short-term construction projects that often require borrowing and a long-term commitment of dedicated funding to repay the loan.

Planning and Program Implementation Activities

Many of the actions that WMP-participants will be implementing may go beyond their technical and financial resources. Additionally, there are significant cost efficiencies that may be realized by developing programs that meet the need of several WMP-participants instead of a collection of independent programs. Therefore, the WMP-participants may opt to contract with other government agencies for specific planning and program implementation activities.

Capital Projects

Capital projects to address water quality concerns, such as extension of sanitary sewer service or the construction of septage receiving facilities have traditionally been the responsibility of local governments. These projects usually require a significant investment over a short period of time with a repayment schedule that can extend several years beyond the actual construction schedule. Municipalities that own or operate wastewater collection and/or treatment systems are required to develop capital improvement plans (CIP), usually on an annual basis. The CIP identifies the major capital projects expected in the next several (5 to 10) years, as well as the anticipated funding mechanism.

Capital projects are paid through some combination of either a pay-as-you-go basis as revenues are available or from the proceeds of indebtedness (bonds), with revenues dedicated to debt retirement. In either case, the revenues supporting the CIP may include some or all of tax revenues, user rates and charges, special assessments, connection fees, and capital reserve funds.
Table 10-2. Funding mechanisms.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stormwater Utility</td>
</tr>
<tr>
<td>Like other utilities, stormwater utilities are</td>
</tr>
<tr>
<td>established to charge a fee for providing a</td>
</tr>
<tr>
<td>service, and typically are accounted for as an</td>
</tr>
<tr>
<td>enterprise fund. This fund is used to cover the</td>
</tr>
<tr>
<td>operation and maintenance of the stormwater</td>
</tr>
<tr>
<td>system and, in some cases, finance capital</td>
</tr>
<tr>
<td>improvements. Fees are paid periodically, often</td>
</tr>
<tr>
<td>quarterly, and included on the water and sewer</td>
</tr>
<tr>
<td>billing. Fee structures often include a flat</td>
</tr>
<tr>
<td>rate charge and a land area charge, generally</td>
</tr>
<tr>
<td>with a minimum per parcel fee. The land area</td>
</tr>
<tr>
<td>charge may vary, based on such factors as the</td>
</tr>
<tr>
<td>parcel’s total impervious area, ratio of</td>
</tr>
<tr>
<td>impervious to pervious surface area, the ratio</td>
</tr>
<tr>
<td>of retention to impervious surface, or the</td>
</tr>
<tr>
<td>installation of approved best management</td>
</tr>
<tr>
<td>practices (BMPs).</td>
</tr>
<tr>
<td>Sewer Rates</td>
</tr>
<tr>
<td>Sewer rates are simply charges to residents and</td>
</tr>
<tr>
<td>businesses for services associated with being</td>
</tr>
<tr>
<td>connected to the municipal sewer systems.</td>
</tr>
<tr>
<td>Sewer charges must be attributable to the</td>
</tr>
<tr>
<td>service provided. Typically, sewer rates</td>
</tr>
<tr>
<td>include the cost of operating and maintaining</td>
</tr>
<tr>
<td>the infrastructure necessary to collect and</td>
</tr>
<tr>
<td>treat the sewage, along with debt service for</td>
</tr>
<tr>
<td>capital projects and, in some cases, funding</td>
</tr>
<tr>
<td>for future capital projects identified in the</td>
</tr>
<tr>
<td>capital improvement plan. Connection fees are</td>
</tr>
<tr>
<td>commonly used as a means of funding the capital</td>
</tr>
<tr>
<td>expenditures needed to provide new or expanded</td>
</tr>
<tr>
<td>sewer service. Sewer rates and charges, like</td>
</tr>
<tr>
<td>other user fees, must be established so as not</td>
</tr>
<tr>
<td>to be a tax.</td>
</tr>
<tr>
<td>Special Assessment</td>
</tr>
<tr>
<td>Special assessments are levied against</td>
</tr>
<tr>
<td>individual properties benefiting from the</td>
</tr>
<tr>
<td>program/project through the establishment of a</td>
</tr>
<tr>
<td>special assessment district (SAD) to cover the</td>
</tr>
<tr>
<td>cost of specific activities/improvements.</td>
</tr>
<tr>
<td>While the authority to establish special</td>
</tr>
<tr>
<td>assessment districts varies by the type of</td>
</tr>
<tr>
<td>governmental unit, special assessments must</td>
</tr>
<tr>
<td>always be directly related and proportional to</td>
</tr>
<tr>
<td>the benefit received from the improvement and</td>
</tr>
<tr>
<td>funds can only be used to pay for the cost of</td>
</tr>
<tr>
<td>the improvement.</td>
</tr>
<tr>
<td>Natural Resources and Env. Prot. Act</td>
</tr>
<tr>
<td>PA 451 (1994). Part 43 of the Natural Resources</td>
</tr>
<tr>
<td>and Environmental Protection Act authorizes</td>
</tr>
<tr>
<td>cities, villages and townships to borrow to</td>
</tr>
<tr>
<td>pay the cost of improvements to waterworks</td>
</tr>
<tr>
<td>systems or sewage systems in those instances</td>
</tr>
<tr>
<td>in which the DEQ, State Department of Public</td>
</tr>
<tr>
<td>Health or a court of competent jurisdiction has</td>
</tr>
<tr>
<td>ordered the installation, construction and/or</td>
</tr>
<tr>
<td>improvement of such systems or the DEQ has</td>
</tr>
<tr>
<td>issued a permit for the installation,</td>
</tr>
<tr>
<td>construction, alteration, improvement or</td>
</tr>
<tr>
<td>operation of such a system and the plans for</td>
</tr>
<tr>
<td>such improvements or system have been prepared</td>
</tr>
<tr>
<td>and approved by the State department or agency</td>
</tr>
<tr>
<td>having the authority to grant such approval.</td>
</tr>
<tr>
<td>RMFA PA 34 (2001). Section 517 of the Revised</td>
</tr>
<tr>
<td>Municipal Finance Act authorizes counties,</td>
</tr>
<tr>
<td>cities, villages and townships to borrow for</td>
</tr>
<tr>
<td>capital improvement items that will improve or</td>
</tr>
<tr>
<td>protect water quality.</td>
</tr>
<tr>
<td>User Fees / Charges</td>
</tr>
<tr>
<td>User fees and charges are financial charges</td>
</tr>
<tr>
<td>for services provided or activities undertaken,</td>
</tr>
<tr>
<td>such as sewer rate charges or sewer connection</td>
</tr>
<tr>
<td>fees, which provide a benefit to the ratepayer</td>
</tr>
<tr>
<td>and not the general public. User fees, however,</td>
</tr>
<tr>
<td>have been the subject of recent litigation and</td>
</tr>
<tr>
<td>must meet the criteria established by Michigan</td>
</tr>
<tr>
<td>law so as not to be determined a tax: a user</td>
</tr>
<tr>
<td>fee must serve a regulatory purpose (not a</td>
</tr>
<tr>
<td>revenue raising purpose), be proportional to</td>
</tr>
<tr>
<td>the cost of the service provided, and be</td>
</tr>
<tr>
<td>voluntary (the user must be able to limit or</td>
</tr>
<tr>
<td>avoid the use of the service in order to</td>
</tr>
<tr>
<td>reduce or avoid paying the fee).</td>
</tr>
<tr>
<td>State Revolving Fund</td>
</tr>
<tr>
<td>The state and federal governments have made</td>
</tr>
<tr>
<td>limited financial assistance available to</td>
</tr>
<tr>
<td>municipalities for capital projects. Municipalities can obtain low-interest loans through the state revolving fund (SRF). In order to obtain a loan, the municipality issues bonds which are sold to the Michigan Municipal Bond Authority in amounts approved by the MDEQ. All of the applicable procedures and requirements for issuing bonds under state and federal law continue to apply. One further condition of these loans is a demonstration that the municipality has the ability to repay the loan. Used almost exclusively in Michigan to finance large sewer treatment works and sewer separation projects, the loan repayments are financed through a combination of rates, connection fees, special assessments, and property taxes.</td>
</tr>
<tr>
<td>Other Grant &amp; Loan Programs</td>
</tr>
<tr>
<td>The Michigan Department of Environmental</td>
</tr>
<tr>
<td>Quality administers a range of grant and loan</td>
</tr>
<tr>
<td>programs aimed at assisting local governments</td>
</tr>
<tr>
<td>develop and implement pollution abatement</td>
</tr>
<tr>
<td>programs. Information on MDEQ grant and loan</td>
</tr>
<tr>
<td>programs can be obtained from the MDEQ Assistance and Support Services. Additionally, there are numerous other local, state, federal, and international entities that operate myriad grant programs providing funds to implement most of the actions identified in this WMP. See Chapter 8 for additional information regarding these grant programs.</td>
</tr>
</tbody>
</table>
Table 10-2. Funding mechanisms. (rows continue across from previous page)

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fee based on runoff; assessed against all properties.</td>
<td>• Must be set up to withstand challenges under Bolt - this</td>
</tr>
<tr>
<td>• Is equitable; directly related to benefit received.</td>
<td>may add complexity to the utility and increase costs.</td>
</tr>
<tr>
<td>• Not based on property value.</td>
<td>• Determining ratio of impervious surface area for parcels</td>
</tr>
<tr>
<td>• Consistent funding stream.</td>
<td>may be difficult/ costly.</td>
</tr>
<tr>
<td>• Use existing billing system; reduces costs.</td>
<td>• Risk of financial liability for refunds in the event a user</td>
</tr>
<tr>
<td>• Fee can be reduced through implementation of BMPs.</td>
<td>fee is determined later to be a tax.</td>
</tr>
<tr>
<td>• Can contract with other governmental units.</td>
<td>• Can be difficult to set rates sufficient to meet future</td>
</tr>
<tr>
<td>• Equitable - direct relationship between cost and service.</td>
<td>capital improvement needs.</td>
</tr>
<tr>
<td>• Users have some control over costs they incur.</td>
<td>• Difficult to include stormwater and other nonpoint</td>
</tr>
<tr>
<td>• Not dependent upon property ownership. This may</td>
<td>source activities.</td>
</tr>
<tr>
<td>be especially important in municipalities where tax</td>
<td>• Municipality may incur additional administrative costs</td>
</tr>
<tr>
<td>exempt entities have significant land holdings.</td>
<td>• Difficult to achieve consensus for the allocation of</td>
</tr>
<tr>
<td>• Direct relationship between benefit and assessment.</td>
<td>benefits.</td>
</tr>
<tr>
<td>• No property tax limitations.</td>
<td>• Borrowing is subject to a right of referendum.</td>
</tr>
<tr>
<td>• Assessments are against all properties (certain tax-</td>
<td>• Borrowing is limited to the purposed set forth in the</td>
</tr>
<tr>
<td>exempt entities are also exempted by the General Property Tax Act from</td>
<td>order.</td>
</tr>
<tr>
<td>paying special assessments).</td>
<td>• The Bolt decision has cast a cloud over traditional means</td>
</tr>
<tr>
<td>• Municipality can borrow in response to court or</td>
<td>of setting / imposing user fees.</td>
</tr>
<tr>
<td>regulatory order with respect to water quality.</td>
<td>• Can be administratively complex.</td>
</tr>
<tr>
<td>• Use more than one funding mechanism to pay debt.</td>
<td>• Risk of financial liability for refunds in the event a user</td>
</tr>
<tr>
<td>• No need to have MDEQ or court order to borrow.</td>
<td>fee is determined later to be a tax.</td>
</tr>
<tr>
<td>• Direct relationship between cost and service.</td>
<td>• The Bolt decision has cast a cloud over traditional means</td>
</tr>
<tr>
<td>• User can limit or avoid the fee.</td>
<td>of setting / imposing user fees.</td>
</tr>
<tr>
<td>• Not bound by Headlee limits.</td>
<td>• Can be administratively complex.</td>
</tr>
<tr>
<td>• Includes capital cost recovery.</td>
<td>• Risk of financial liability for refunds in the event a user</td>
</tr>
<tr>
<td>• Fees and charges are paid by all system users; this</td>
<td>fee is determined later to be a tax.</td>
</tr>
<tr>
<td>may be especially important in municipalities where tax</td>
<td>• Must still pay State back.</td>
</tr>
<tr>
<td>exempt entities have significant land holdings.</td>
<td>• May require bond issue to cover repayment.</td>
</tr>
<tr>
<td>• Low-interest.</td>
<td>• Limited pool of funds.</td>
</tr>
<tr>
<td>• Significant amounts.</td>
<td>• Competitive program.</td>
</tr>
<tr>
<td>• Can now be used for planning infrastructure projects.</td>
<td>• Programs tend to be focused.</td>
</tr>
<tr>
<td>• Many programs are grants.</td>
<td>• Limited funds available.</td>
</tr>
<tr>
<td>• Many programs require inter-governmental cooperation.</td>
<td>• Many programs are competitive.</td>
</tr>
<tr>
<td>• Municipality does not have to draw on general fund</td>
<td>• Local match funding is usually required.</td>
</tr>
<tr>
<td>for program/initiative.</td>
<td>• Many programs require inter-governmental cooperation.</td>
</tr>
<tr>
<td>• Many programs require inter-governmental cooperation.</td>
<td></td>
</tr>
<tr>
<td>• Programs tend to be focused.</td>
<td></td>
</tr>
<tr>
<td>• Limited funds available.</td>
<td></td>
</tr>
<tr>
<td>• Many programs are competitive.</td>
<td></td>
</tr>
<tr>
<td>• Local match funding is usually required.</td>
<td></td>
</tr>
<tr>
<td>• Many programs require inter-governmental cooperation.</td>
<td></td>
</tr>
</tbody>
</table>

Plan Institutionalization
Lake St. Clair Direct Drainage Subwatershed

10/31/2006
Summary
In summary, the range of actions SWAG members are responsible for implementing has expanded greatly. There are a variety of alternatives for funding these activities that need to be evaluated in choosing a course of action for any particular activity.

Table 10-3 lists a number of actions communities may implement and the institutional mechanisms available for funding them. This table was prepared to use as a tool to compare and contrast the desirability of the different mechanisms with respect to any particular activity. For example, communities could use this table to rank the alternatives low, medium, or high as part of narrowing options and focusing discussion in the decision making process.

Table 10-3. Examples of actions and potential funding mechanisms.

<table>
<thead>
<tr>
<th>Action</th>
<th>Drain Code</th>
<th>Public Works Act</th>
<th>Inter-Municipal Committee Act</th>
<th>Municipal Sewer and Water Authorities</th>
<th>County Public Improvement Act</th>
<th>Stormwater Utilities</th>
<th>Sewer Rates</th>
<th>Special Assessment Districts</th>
<th>Natural Resources and Env. Protection</th>
<th>Revised Municipal Finance Act</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning, Institutionalization, and Implementation4</td>
<td>X</td>
</tr>
<tr>
<td>Ordinances, Zoning, and Development Standards4</td>
<td>X</td>
</tr>
<tr>
<td>Public Education and Participation4</td>
<td>X</td>
</tr>
<tr>
<td>Good Housekeeping and Pollution Prevention1,4</td>
<td>X</td>
</tr>
<tr>
<td>Stormwater Best Management Practices4</td>
<td>X</td>
</tr>
<tr>
<td>Water Quality Monitoring4</td>
<td>X</td>
</tr>
<tr>
<td>Capital Improvement Projects2</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

1 - Includes Illicit Discharge Elimination Plans and Catch Basin Cleaning/Street Sweeping (although the latter is not fundable through the Inter-Municipal Committee Act).

2 - Includes Stormwater Control Facilities, Sanitary Sewer Overflow Control, Combined Sewer Overflow Control, Sewer Rehabilitation, and Sewer Extension.

3 - While the Drain Code is primarily used for generating funding for capital projects, other activities can be funded if included in a petition and inter-municipal agreements.

4 - All of these activities will include both a planning and an implementation component, e.g.: an illicit discharge elimination program will require developing a plan, which may include new ordinances, periodic assessment of program effectiveness, etc, as well as implementation activities, such as surveying commercial/industrial facilities to identify cross-connections or inspecting residential septic systems on a periodic basis.

References

Cool Cities Initiative
In the State of Michigan, entities receiving grants through the ‘Cool Cities’ program receive preferred consideration for other grants that are part of the program. For more information, refer to the website:

http://www.coolcities.com/

Definition of Terms
Definition of Terms

Introduction

This introductory division of the plan lists and defines most of the acronyms encountered in the plan.

Acronyms

AAW  Adopt-A-Watershed
ANGB  Air National Guard Base
ANSTF  Aquatic Nuisance Species Task Force
AOC  Area of Concern
APA  Approved Public Agency
APHIS  Animal and Plant Health Inspection Service
APWG  Alien Plant Working Group
ATSDR  Agency for Toxic Substances and Disease Registry
BMP  Best Management Practice
BOD  Biochemical Oxygen Demand
BUI  Beneficial Use Impairment
CDC  Center for Disease Control
CDs  Conservation Districts
CEA  County Enforcing Agency
CF  Conservation Fund
CGEE  Center for Global Environmental Education
CHRCP  Coastal Habitat Restoration and Conservation Plan
CIP  Capital Improvement Program
CMI  Clean Michigan Initiative
COC  Certificates of Coverage
COD  Chemical Oxygen Demand
CRA  Clinton River Assessment
CRBWI  Clinton River Basin Watershed Initiative
CRCRP  Clinton River Coldwater Restoration Project
CREP  Conservation Reserve Enhancement Program
CREW  Clinton River East Subwatershed
CRP  Conservation Reserve Program
CRPAC  Clinton River Remedial and Preventative Action Plan
CRWC  Clinton River Watershed Council
CRWI  Clinton River Watershed Initiative
CSO  Combined Sewer Overflow
CWA  Clean Water Act
CWP  Center for Watershed Protection
DC  Drain Commissioner
DCIA  Directly Connected Impervious Areas
DDT  dichloro-diphenyl-trichloroethane
DO  Dissolved Oxygen
DPW  Department of Public Works
DU  Ducks Unlimited
DWSDD  Detroit Water and Sewerage Department
ECT  Environmental Counseling & Technology
EKU  Eastern Kentucky University
EMEAC  East Michigan Environmental Action Council
EPA  Environmental Protection Agency
ERG  Evaluation and Revision Guidance
FEMA  Federal Emergency Management Agency
FHA  Federal Highway Administration
FISRWG  Federal Interagency Stream Restoration Working Group
FLEP  Forest Land Enhancement Program
FSA  Farm Service Agency
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSDWA</td>
<td>Federal Safe Drinking Water Act</td>
</tr>
<tr>
<td>FSP</td>
<td>Forest Stewardship Program</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
</tr>
<tr>
<td>FWPCA</td>
<td>Federal Water Pollution Control Administration</td>
</tr>
<tr>
<td>FWS</td>
<td>Fish and Wildlife Service</td>
</tr>
<tr>
<td>GAAMPS</td>
<td>Generally Accepted Agriculture and Management Practices</td>
</tr>
<tr>
<td>GF</td>
<td>Groundwater Foundation</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information Systems</td>
</tr>
<tr>
<td>GLAGAP</td>
<td>Great Lakes Aquatic GAP Program</td>
</tr>
<tr>
<td>GLC</td>
<td>Great Lakes Commission</td>
</tr>
<tr>
<td>GLNPO</td>
<td>Great Lakes National Program Office</td>
</tr>
<tr>
<td>GLPANS</td>
<td>Great Lakes Panel on Aquatic Nuisance Species</td>
</tr>
<tr>
<td>GREEN</td>
<td>Global Rivers Environmental Education Network</td>
</tr>
<tr>
<td>GRP</td>
<td>Grassland Reserve Program</td>
</tr>
<tr>
<td>GWK</td>
<td>George W. Kuhn</td>
</tr>
<tr>
<td>HCMA</td>
<td>Huron-Clinton Metroparks Authority</td>
</tr>
<tr>
<td>HHW</td>
<td>Household Hazardous Wastes</td>
</tr>
<tr>
<td>HSI</td>
<td>Hotspot Site Investigation</td>
</tr>
<tr>
<td>HSS</td>
<td>Health and Social Services</td>
</tr>
<tr>
<td>HUC</td>
<td>Hydrologic Unit Code</td>
</tr>
<tr>
<td>ICM</td>
<td>Impervious Cover Model</td>
</tr>
<tr>
<td>IDEP</td>
<td>Illicit Discharge Elimination Program</td>
</tr>
<tr>
<td>IJC</td>
<td>International Joint Commission</td>
</tr>
<tr>
<td>IDNR</td>
<td>Iowa Department of Natural Resources</td>
</tr>
<tr>
<td>IWR</td>
<td>Institute of Water Research</td>
</tr>
<tr>
<td>LAP</td>
<td>Landowner Assistance Program</td>
</tr>
<tr>
<td>LID</td>
<td>Low Impact Development</td>
</tr>
<tr>
<td>LIP</td>
<td>Landowner Incentive Program</td>
</tr>
<tr>
<td>LSCCSR</td>
<td>Lake St. Clair Conference Summary Report</td>
</tr>
<tr>
<td>LSCEC</td>
<td>Lake St. Clair Environmental Characterization</td>
</tr>
<tr>
<td>LSCW</td>
<td>Lake St. Clair Subwatershed</td>
</tr>
<tr>
<td>LUSTs</td>
<td>Leaking Underground Storage Tanks</td>
</tr>
<tr>
<td>MAEAP</td>
<td>Michigan Agriculture Environmental Assurance Program</td>
</tr>
<tr>
<td>MANSC</td>
<td>Michigan Aquatic Nuisance Species Council</td>
</tr>
<tr>
<td>MANSC</td>
<td>Michigan's Aquatic Nuisance Species Council</td>
</tr>
<tr>
<td>MAP</td>
<td>Michigan Association of Planning</td>
</tr>
<tr>
<td>MAS</td>
<td>Michigan Audubon Society</td>
</tr>
<tr>
<td>MCHD</td>
<td>Macomb County Health Department</td>
</tr>
<tr>
<td>MCL</td>
<td>Maximum Contaminant Level</td>
</tr>
<tr>
<td>MCNI</td>
<td>Macomb County Natural Features Inventory</td>
</tr>
<tr>
<td>MCPAO</td>
<td>Macomb County Prosecuting Attorney’s Office</td>
</tr>
<tr>
<td>MCPHD</td>
<td>Macomb County Public Health Department</td>
</tr>
<tr>
<td>MCPED</td>
<td>Macomb County Department of Planning &amp; Economic Development</td>
</tr>
<tr>
<td>MCPWO</td>
<td>Macomb County Public Works Office</td>
</tr>
<tr>
<td>MCRC</td>
<td>Macomb County Road Commission</td>
</tr>
<tr>
<td>MCSCD</td>
<td>Macomb County Soil Conservation District</td>
</tr>
<tr>
<td>MDA</td>
<td>Michigan Department of Agriculture</td>
</tr>
<tr>
<td>MDCH</td>
<td>Michigan Department of Community Health</td>
</tr>
<tr>
<td>MDEQ</td>
<td>Michigan Department of Environmental Quality</td>
</tr>
<tr>
<td>MDNR</td>
<td>Michigan Department of Natural Resources</td>
</tr>
<tr>
<td>MDOT</td>
<td>Michigan Department of Transportation</td>
</tr>
<tr>
<td>MEA</td>
<td>Michigan Enforcing Agency</td>
</tr>
<tr>
<td>MEC</td>
<td>Michigan Environmental Council</td>
</tr>
<tr>
<td>MGSP</td>
<td>Michigan Groundwater Stewardship Program</td>
</tr>
<tr>
<td>MIPC</td>
<td>Michigan Invasive Plant Control</td>
</tr>
<tr>
<td>MLC</td>
<td>Macomb Land Conservancy</td>
</tr>
<tr>
<td>MML</td>
<td>Michigan Municipal League</td>
</tr>
<tr>
<td>MNA</td>
<td>Michigan Nature Association</td>
</tr>
<tr>
<td>MNFI</td>
<td>Michigan Natural Features Inventory</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MNRTF</td>
<td>Michigan Natural Resources Trust Fund</td>
</tr>
<tr>
<td>MOAC</td>
<td>Michigan Organic Advisory Committee</td>
</tr>
<tr>
<td>MRC</td>
<td>Michigan Recycling Coalition</td>
</tr>
<tr>
<td>MRCC</td>
<td>Midwestern Regional Climate Center</td>
</tr>
<tr>
<td>MS4s</td>
<td>Municipal Separate Storm Sewer Systems</td>
</tr>
<tr>
<td>MSUE</td>
<td>Michigan State University Extension</td>
</tr>
<tr>
<td>MTA</td>
<td>Michigan Township Association</td>
</tr>
<tr>
<td>MTESP</td>
<td>Michigan Turfgrass Environmental Stewardship Program</td>
</tr>
<tr>
<td>MUGLCC</td>
<td>Monitoring Upper Great Lakes Connection Channel Committee</td>
</tr>
<tr>
<td>NALMS</td>
<td>North American Lake Management Society</td>
</tr>
<tr>
<td>NAWMP</td>
<td>North American Waterfowl Management Plan</td>
</tr>
<tr>
<td>NAWQA</td>
<td>National Water Quality Assessment</td>
</tr>
<tr>
<td>NBS</td>
<td>National Biological Service</td>
</tr>
<tr>
<td>NCDC</td>
<td>National Climatic Data Center</td>
</tr>
<tr>
<td>NDSA</td>
<td>Nested Drainage System Agreements</td>
</tr>
<tr>
<td>NLCD</td>
<td>National Land Cover Data</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOS</td>
<td>National Ocean Service</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NPL</td>
<td>National Priorities List</td>
</tr>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>NRDC</td>
<td>Natural Resources Defense Council</td>
</tr>
<tr>
<td>NREPA</td>
<td>Natural Resources and Environmental Protection Act</td>
</tr>
<tr>
<td>NSA</td>
<td>Neighborhood Source Assessment</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>NSP</td>
<td>Nonpoint Source Program</td>
</tr>
<tr>
<td>NWF</td>
<td>National Wildlife Federation</td>
</tr>
<tr>
<td>NWIS</td>
<td>National Water Information System</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>OC</td>
<td>Oakland County</td>
</tr>
<tr>
<td>OCDC</td>
<td>Oakland County Drain Commissioner</td>
</tr>
<tr>
<td>OEPA</td>
<td>Ohio Environmental Protection Agency</td>
</tr>
<tr>
<td>ORV</td>
<td>Off-Road Vehicle</td>
</tr>
<tr>
<td>OSDS</td>
<td>On-site Sewage Disposal Systems</td>
</tr>
<tr>
<td>PAA</td>
<td>Pervious Area Assessment</td>
</tr>
<tr>
<td>PAC</td>
<td>Public Advisory Council</td>
</tr>
<tr>
<td>PCB</td>
<td>Polychlorinated Biphenyl</td>
</tr>
<tr>
<td>PEAS</td>
<td>Pollution Emergency Reporting System</td>
</tr>
<tr>
<td>PEL</td>
<td>Probably Effect Level</td>
</tr>
<tr>
<td>PEP</td>
<td>Public Education Plan</td>
</tr>
<tr>
<td>PF</td>
<td>Pheasants Forever</td>
</tr>
<tr>
<td>POTW</td>
<td>Publicly Owned Treatment Works</td>
</tr>
<tr>
<td>PPP</td>
<td>Public Participation Plan</td>
</tr>
<tr>
<td>PUD</td>
<td>Planned Unit Development</td>
</tr>
<tr>
<td>R2W</td>
<td>Red Run Subwatershed</td>
</tr>
<tr>
<td>RAP</td>
<td>Remedial (and Preventative) Action Plan</td>
</tr>
<tr>
<td>R-B</td>
<td>Richards-Baker</td>
</tr>
<tr>
<td>RETAP</td>
<td>Retired Engineer Technical Assistance Program</td>
</tr>
<tr>
<td>RCMC</td>
<td>Road Commission of Macomb County</td>
</tr>
<tr>
<td>RRWWPD</td>
<td>Rouge River Wet Weather Demonstration Project</td>
</tr>
<tr>
<td>RTF</td>
<td>Retention and Treatment Facility</td>
</tr>
<tr>
<td>SC</td>
<td>Sierra Club</td>
</tr>
<tr>
<td>SEMCOG</td>
<td>Southeast Michigan Council of Governments</td>
</tr>
<tr>
<td>SESC</td>
<td>Soil Erosion and Sediment Control</td>
</tr>
<tr>
<td>SEV</td>
<td>State Equalized Valuation</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Office</td>
</tr>
<tr>
<td>SMLC</td>
<td>Southeast Michigan Land Conservancy</td>
</tr>
<tr>
<td>SMSBF</td>
<td>Southeast Michigan Sustainable Business Forum</td>
</tr>
</tbody>
</table>
SN  Stewardship Network
SOD  Sediment Oxygen Demand
SRF  State Water Pollution Control Revolving Fund
SSD  Streets and Storm Drains
SSO  Sanitary Sewer Overflow
SSOs  Sanitary Sewer Overflows
STEPL  Spreadsheet Tool for the Estimation of Pollutant Load
STORET  Storage and Retrieval
SWAG  Subwatershed Advisory Group
SWC  Storm Water Center
SWEU  Surface Water Enforcement Unit
SWSP  Surface Water Sampling Program
SWPPI  Storm Water Pollution Prevention Initiatives
TACOM  Tank-automotive and Armaments Command
TDS  Total Dissolved Solids
TKN  Total Kjeldahl Nitrogen
TMDL  Total Maximum Daily Load
TNC  The Nature Conservancy
TOC  Table of Contents
TOC  Total Organic Carbon
TP  Total Phosphorus
TPL  Trust for Public Land
TSS  Total Suspended Solids
TU  Trout Unlimited
UMN  University of Minnesota
USA  Unified Stream Assessments
USACE  U.S. Army Corps of Engineers
USCB  United States Census Bureau
USCG  U.S. Coast Guard
USD  U.S. Department of Agriculture
USDANAC  U.S. Department of Agriculture National Agroforestry Center
USDHS  U.S. Department of Homeland Security
USDOC  U.S. Department of Commerce
USDOD  U.S. Department of Defense
USDOI  U.S. Department of The Interior
USDOT  U.S. Department of Transportation
USEPA  U.S. Environmental Protection Agency
USFS  U.S. Forest Service
USFWS  U.S. Fish and Wildlife Service
USGS  U.S. Geological Survey
USFR  Unified Subwatershed and Site Reconnaissance
WDOE  Wayne County Department of Environment
WHC  Wildlife Habitat Council
WHIP  Wildlife Habitat Incentives Program
WHMD  Waste and Hazardous Materials Division
WMP  Watershed Management Plan
WQA  Water Quality Assessment
WQMP  Water Quality Management Plan
WQS  Water Quality Standards
WQTIP  Water Quality Trading Program
WRC  Water Resources Commission
WWF  World Wildlife Fund
WWTP  Waste Water Treatment Plant
Appendix B

NPDES Permit MIG619000
MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY
NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM
WASTEWATER DISCHARGE GENERAL PERMIT

Storm Water Discharges from Municipal Separate Storm Sewer Systems (MS4s) Subject to Watershed Plan Requirements

In compliance with the provisions of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq; the "Federal Act"), Michigan Act 451, Public Acts of 1994, as amended (the "Michigan Act"), Parts 31 and 41, and Michigan Executive Orders 1991-31, 1995-4 and 1995-18, storm water and non-storm water (as specified in Part I.A.1.) is authorized to be discharged from the separate storm water drainage systems of those permittees specified in individual “certificates of coverage” in accordance with the conditions set forth in this general National Pollutant Discharge Elimination System (NPDES) permit (the “permit”).

The applicability of this permit shall be limited to point source discharges of storm water and non-storm water (as specified in Part I.A.1.) from municipal separate storm water drainage systems which have requested coverage under this general permit and have not been determined by the Michigan Department of Environmental Quality (the “Department”) to need an individual NPDES permit or coverage under the NPDES general permit “Storm Water Discharges from MS4s Subject to the Six Minimum Measures.” Discharges which may cause or contribute to a violation of a water quality standard are not authorized by this permit.

In order to constitute a valid authorization to discharge, this permit must be complemented by a certificate of coverage issued by the Department. The following will be identified in the certificate of coverage:

- The watershed boundaries that are to be covered by a Watershed Management Plan (WMP),
- The submittal date for the process to facilitate the involvement of the watershed jurisdictions and the public in the development of the WMP,
- The submittal dates for the Illicit Discharge Elimination Plan (IDEP) and the Public Education Plan (PEP) (or a revised IDEP or PEP),
- The submittal date for the WMP,
- The submittal date for the Storm Water Pollution Prevention Initiative (SWPPI) and implementation schedule,
- Any deferred areas for a portion of a permittee’s urbanized area,
- The submittal date for the Annual Progress Reports,
- The submittal date for the revised WMP (or a written determination not to revise the WMP), and
- The submittal date for the revised SWPPI (or a written determination not to revise the SWPPI).

Unless specified otherwise, all contact with the Department required by this permit shall be to the position(s) indicated in the certificate of coverage, and all Department approvals specified in this permit shall be by the position(s) indicated in the certificate of coverage.

In accordance with Section 324.3118 of the Michigan Act, the permittee shall make payment of an annual storm water fee to the Department. In response to the Department’s annual notice, the permittee shall submit the fee, which shall be postmarked no later than March 15 of each year.

The terms and conditions of this general permit shall apply to the permittee on the effective date of a certificate of coverage issued to the permittee. The Department may grant a contested case hearing on this general permit in accordance with the Michigan Act. Any person who is aggrieved by this permit may file a sworn petition with the Office of Administrative Hearings of the Michigan Department of Environmental Quality, setting forth the conditions of the permit which are being challenged and specifying the grounds for the challenge. The Department may grant a contested case hearing on the certificate of coverage issued to the permittee under this general permit in accordance with Rule 2192(c) (Rule 323.2192 of the Michigan Administrative Code).
This general permit shall take effect April 1, 2003. The provisions of this permit are severable. After notice and opportunity for a hearing, this permit may be modified, suspended or revoked in whole or in part during its term in accordance with applicable laws and rules.

This general permit shall expire at midnight, April 1, 2008.

Issued ___ December 5, 2002 ________________.

__________________________
D. Steven Eldredge
Chief, Surface Water Permits Section
Water Division
PART I

Section A. Authorizations and Coverage Provisions

1. Authorized Discharges
   a. Eligible Permittees
      Except as excluded below, any governmental entity that has ownership or control of discharges through separate
      storm water drainage systems may be eligible for coverage under this general permit including, but not limited to, a
      county, a city, a village, a township, a county road commission, an entity with jurisdiction under the Drain Code
      for an inter-county or intra-county drain, a public school district, a public college or university, a department or
      agency of the state, and a department or agency of the federal government.

      A city, village, or township (primary jurisdiction) permittee may have, within its political or territorial boundaries,
      smaller “nested” drainage systems owned or operated by public bodies such as school districts, public universities,
      or county, state, or federal agencies. If the primary jurisdiction and the nested jurisdiction agree to cooperate in
      carrying out the responsibilities for control of the drainage system, the nested jurisdiction does not need to apply
      for a separate storm water drainage system permit. Otherwise, the nested jurisdiction shall apply for a permit.

      The Department will determine eligibility on a case-by-case basis. Coverage will be granted only if the
      Department determines there is a sufficient number of participating watershed partners to ensure implementation of
      an effective WMP.

      Non-governmental entities (such as individuals, private schools, private colleges and private universities, or
      industrial and commercial entities) are explicitly not eligible for coverage under this general permit. However,
      these entities are encouraged to participate in WMP development within their watershed.

   b. Storm Water Discharges by the Permittee
      This permit authorizes the discharge of storm water from municipal separate storm water drainage systems to the
      waters of the state. Following approval of the SWPPI (Part I.B.2.a.), the discharge of storm water from new point
      source discharges in the permittee's separate storm water drainage system are authorized only if in accordance with
      the approved SWPPI.

   c. Discharges Authorized under other NPDES Permits
      The discharge of storm water commingled with discharges authorized under other NPDES permits is authorized
      under this permit.

   d. Non-Storm Water Discharges
      The following non-storm water discharges are not authorized in this document, but do not need to be prohibited by
      the permittee, unless they are identified as significant contributors of pollutants to the regulated separate storm
      water drainage system:
      - water line flushing,
      - landscape irrigation runoff,
      - diverted stream flows,
      - rising groundwaters,
      - uncontaminated groundwater infiltration (as defined by 40 CFR 35.2005(20)),
      - pumped groundwaters (except for groundwater cleanups not specifically authorized by NPDES permits),
      - discharges from potable water sources,
      - foundation drains,
      - air conditioning condensates,
      - irrigation waters,
      - springs,
      - water from crawl space pumps,
      - footing drains and basement sump pumps,
      - lawn watering runoff,
      - waters from non-commercial car washing,
      - flows from riparian habitats and wetlands,
PART I

Section A. Authorizations and Coverage Provisions

- residential swimming pool waters and other permitted, dechlorinated swimming pool waters without untreated filter backwash, and
- residual street wash waters.

Discharges or flows from emergency fire fighting activities are exempt from prohibition by the permittee, but shall be addressed by the permittee if they are identified as significant sources of pollutants to waters of the state.

A swimming pool operated by the permittee shall not be discharged to the storm water drainage system, or directly to waters of the state, without specific NPDES authorization from the Department.

2. Application Requirements

The applicant shall submit an application to the Department when requesting coverage under this general permit. The applicant shall provide the following information:

a. The applicant’s legal name, mailing address, storm water program manager, watershed name, and proposed watershed partners.

b. A map showing the boundary for the proposed watershed (this may be a watershed or sub-watershed).

c. The location of any known point source discharges of storm water and the receiving water(s) within the applicant’s regulated area, unless the Department accepts an alternate submission that still adequately represents the applicant’s known MS4s. This requirement can be satisfied by providing an existing map of the separate storm water drainage system.

d. A map of the applicant’s political/territorial boundaries and regulated area, indicating the hydrologic boundaries and the approximate square mileage for both the drainage and urbanized areas (for urbanized areas where WMPs are deferred, the map shall define the boundaries of the urbanized area within the applicant’s political or territorial boundaries and include that area for coverage under the permit).

e. A primary jurisdiction shall submit to the Department: 1) the name and general description of each nested jurisdictional area or drainage system for which a cooperative agreement has been reached to carry out storm water discharge responsibilities; and 2) the name of other nested jurisdictional areas or drainage systems within their political or territorial boundaries for which they have information that indicates a separate storm water drainage system permit may be required. Additionally, the primary jurisdiction may submit documentation of its efforts to notify the nested jurisdictions that they need to either get their own permits or work cooperatively under one permit. The primary jurisdiction shall be responsible for assuring compliance with this general permit for those nested jurisdictions with which they have entered into an agreement and listed as part of the application for this permit.

f. Any permittee eligible for coverage under the NPDES general permit “Storm Water Discharges from MS4s Subject to the Six Minimum Measures” who applies for this general permit within a watershed where a WMP has already been developed and submitted to the Department, in accordance with NPDES Permits MIG610000 or MIG619000, shall submit an approvable SWPPP and implementation schedule (Part I.B.2. of this general permit) to the Department as part of the application, or in accordance with another schedule set by the Department.

3. IDEP and PEP Submittal

Within one year after the effective date of the certificate of coverage, the permittee shall submit to the Department an approvable IDEP and PEP, or updates for existing Plans to comply with current permit requirements. The submission shall include the following:
PART I

Section A. Authorizations and Coverage Provisions

a. Illicit Discharge Elimination Plan (IDEP)
   The applicant shall submit an IDEP, or an update to an existing IDEP, to prohibit and effectively eliminate illicit discharges (including the discharge of sanitary wastewater) to the applicant's separate storm water drainage system for the regulated area. At a minimum, the IDEP shall include the following:
   
   1) a program to find, prioritize and eliminate illicit discharges and illicit connections identified during dry weather screening activities;
   
   2) a description of a program to minimize infiltration of seepage from sanitary sewers and on-site sewage disposal systems into the applicant's separate storm water drainage system;
   
   3) a method for determining the effectiveness of the illicit discharge elimination activities which shall, at a minimum, result in the inspection of each storm water point source every five years unless the Department approves an alternative schedule (an alternative schedule may focus efforts on urbanized areas and cover other regulated areas less frequently, based on watershed goals); and
   
   4) an updated map of the location of each known storm water point source and the respective receiving water or drainage system (the Department may accept an alternate submission if the permittee demonstrates that the submission will be sufficient in the effective elimination of illicit discharges).

   “Illicit connection” means a physical connection to the separate storm water drainage system that 1) primarily conveys illicit discharges into the system and/or 2) is not authorized or permitted by the local authority (where a local authority requires such authorization or permit).

   “Illicit discharge” means any discharge (or seepage) to the separate storm water drainage system that is not composed entirely of storm water or uncontaminated groundwater. Examples of illicit discharges include dumping of motor vehicle fluids, household hazardous wastes, grass clippings, leaf litter, or animal wastes, or unauthorized discharges of sewage, industrial waste, restaurant wastes, or any other non-storm water waste into a separate storm water drainage system.

b. Public Education Plan (PEP)
   The applicant shall submit a PEP, or an update to an existing PEP. The PEP shall promote, publicize, and facilitate watershed education for the purpose of encouraging the public to reduce the discharge of pollutants in storm water to the maximum extent practicable. The PEP may involve combining with or coordinating existing programs for public stewardship of water resources. Pollution prevention shall be encouraged. The PEP shall describe a method for determining the effectiveness of the various public education activities.

   "Public" shall be defined to include all persons who potentially could affect the quality of storm water discharges, including, but not limited to, residents, visitors to the area, businesses, commercial operations, and construction activities.

   The PEP shall be designed to accomplish, at a minimum, the following as appropriate based on the potential impact on the watershed:
   
   1) education of the public about their responsibility and stewardship in their watershed;
   
   2) education of the public on the location of residential separate storm water drainage system catch basins, the waters of the state where the system discharges, and potential impacts from pollutants from the separate storm water drainage system;
   
   3) encouragement of public reporting of the presence of illicit discharges or improper disposal of materials into the applicant's separate storm water drainage system,
PART I

Section A. Authorizations and Coverage Provisions

4) education of the public on the need to minimize the amount of residential, or non-commercial, wastes washed into nearby catch basins (this should include the preferred cleaning materials and procedures for car, pavement, or power washing; the acceptable application and disposal of pesticides and fertilizers; and the effects caused by grass clippings, leaf litter, and animal wastes that get flushed into the waterway),

5) education of the public on the availability, location and requirements of facilities for disposal or drop-off of household hazardous wastes, travel trailer sanitary wastes, chemicals, yard wastes, and motor vehicle fluids; and

6) education of the public concerning management of riparian lands to protect water quality.

Upon Departmental approval, the permittee shall begin implementation of the IDEP and PEP. If the Department does not take action to approve or comment on the Plans within 90 days of submittal, the permittee shall begin implementation of these Plans as submitted. The Department may notify the permittee at any time that the Plans do not meet minimum requirements. Such notification shall identify why the Plan does not meet minimum requirements. The permittee shall make the required changes to the Plans within 90 days after such notification from the Department. The permittee shall submit written certification of the changes to the Department as part of the annual report.

4. Identification of Additional Point Source Discharges of Storm Water

If the permittee becomes aware of any separate storm water drainage system discharges which were not identified in the application, the permittee shall provide the following information to the Department as part of the annual progress report (Part I.B.3.):

a. the location of the discharge of storm water for which coverage is requested,

b. the receiving water for the discharge, and

c. any necessary updates to the map of the drainage area indicating the hydrologic boundary and approximate square miles of the coverage area (originally submitted with the application).

These requirements can be satisfied by providing an updated map of the permittee's separate storm water drainage system.

5. Expiration and Reissuance

If the permittee wishes to continue a discharge authorized under this permit beyond the permit’s expiration date, the permittee shall submit a completed application, and any other documents requested by the Department, to the Department on or before October 1, 2007. A person holding a valid certificate of coverage under an expired general permit shall continue to be subject to the terms and conditions of the expired permit until the permit is terminated, revoked, or reissued. Coverage under a reissued permit can only begin on the effective date of the reissued permit.

If this permit is modified or reissued, the permittee shall: a) request coverage under the modified or reissued permit, b) apply for an individual NPDES permit, c) apply for another general NPDES permit, or d) request termination of discharge authorization. Lacking an adequate response, the permittee’s authorization to discharge shall expire on the effective date of the reissued or modified permit.

If this permit is terminated or revoked, all authorizations to discharge under the permit shall expire on the date of termination or revocation.
PART I

Section A. Authorizations and Coverage Provisions

6. Requirement to Obtain an Individual Permit

The Department may require any person who is authorized to discharge by a certificate of coverage and this permit, to apply for and obtain an individual NPDES permit if any of the following circumstances apply:

a. the discharge is a significant contributor to pollution as determined by the Department on a case-by-case basis;

b. the discharger is not complying or has not complied with the conditions of the permit;

c. a change has occurred in the availability of demonstrated technology or practices for the control or abatement of waste applicable to the point source discharge;

d. effluent standards and limitations are promulgated for point source discharges subject to this permit; and

e. the Department determines that the criteria under which the permit was issued no longer apply.

Any person may request the Department to take action pursuant to the provisions of Rule 2191 (Rule 323.2191 of the Michigan Administrative Code).
PART I

Section A. Authorizations and Coverage Provisions

7. Discharges Requiring Separate Authorization

a. Tracer Dye Discharges
   This general permit does not authorize the discharge of tracer dyes without approval from the Department. Requests to discharge tracer dyes shall be submitted to the Department in accordance with Rule 1097 (Rule 323.1097 of the Michigan Administrative Code).

b. Water Treatment Additives
   In the event a permittee proposes to discharge water additives, the permittee shall submit a request to discharge water additives to the Department for approval. Such requests shall be sent to the Surface Water Quality Assessment Section, Water Division, Department of Environmental Quality, P.O. Box 30273, Lansing, Michigan 48909, with a copy to the Department contact listed on the certificate of coverage. Instructions to submit a request electronically may be obtained via the Internet (http://www.michigan.gov/deq and on the left side of the screen click on Water, Water Quality Monitoring, and Assessment of Michigan Waters; then click on the Water Treatment Additive List which is under the Information banner). Written approval from the Department to discharge such additives at specified levels shall be obtained prior to discharge by the permittee. Additional monitoring and reporting may be required as a condition for the approval to discharge the additive.

   A request to discharge water additives shall include all of the following water additive usage and discharge information:

   1) Material Safety Data Sheet;
   2) the proposed water additive discharge concentration;
   3) the discharge frequency (i.e., number of hours per day and number of days per year);
   4) the monitoring point from which the product is to be discharged;
   5) the type of removal treatment, if any, that the water additive receives prior to discharge;
   6) product function (i.e. microbiocide, flocculant, etc.);
   7) a 48-hour LC<sub>50</sub> or EC<sub>50</sub> for a North American freshwater planktonic crustacean (either Ceriodaphnia sp., Daphnia sp., or Simocephalus sp.); and
   8) the results of a toxicity test for one other North American freshwater aquatic species (other than a planktonic crustacean) that meets a minimum requirement of Rule 323.1057(2) of the Water Quality Standards.

   Prior to submitting the request, the permittee may contact the Surface Water Quality Assessment Section by telephone at 517-335-4184 or via the Internet at the address given above to determine if the Department has the product toxicity data required by items 7) and 8) above. If the Department has the data, the permittee will not need to submit product toxicity data.
PART I

Section B. Watershed Management

1. Watershed Management Plan (WMP)

The permittee shall participate in the development and implementation of a WMP. The purpose of the WMP is to identify and execute the actions needed to resolve water quality and water quantity concerns by fostering cooperation among the various public and private entities in the watershed. Those concerns related to Total Maximum Daily Loads (TMDLs) established within the watershed should be included and details for those actions specific to storm water controls shall be listed in the WMP (the Department recognizes that some of the actions required to meet the goals of some TMDLs may involve actions outside of the authorization of this general storm water permit). The emphasis of the WMP shall be to mitigate the undesirable impacts caused by wet weather discharges from separate storm water drainage systems.

Those people most affected by management decisions should participate in the development of the WMP and shape key decisions. By the date specified in the certificate of coverage, the process to facilitate the involvement of the watershed jurisdictions and the public (i.e., "the Public Participation Process") in the development of the WMP shall be submitted to the Department for approval. A person, group, or agency responsible for coordinating the development of the WMP shall be identified. Where multiple permittees are responsible for submittal of a WMP for the same watershed, one coordinated public participation process shall be submitted by all of the permittees.

The WMP shall cover the watershed(s) identified on the certificate of coverage. By the date specified in the certificate of coverage, the permittee shall submit the WMP to the Department. (Note: the WMP requirement may be deferred until a later time for a portion of the permittee’s jurisdiction. The WMP shall not be deferred for the permittee’s entire urbanized area. Any portion of the jurisdiction that is deferred will be indicated on the certificate of coverage.) Significant components of the WMP which do not have complete agreement of the participants shall be detailed in an appendix to the WMP [including a description of the WMP component, identification of participants who disagreed with the component, reasons for disagreement (if provided), and suggested alternatives (if provided)]. Procedures for revising the WMP shall be identified. Where multiple permittees are responsible for submittal of a WMP for the same watershed, one WMP shall be submitted on behalf of all the permittees. Comments provided by the Department within 90 days of submittal of the WMP should be addressed by the participants.

The permittee may choose to demonstrate that a watershed(s) other than that specified on the certificate of coverage is appropriate. This demonstration shall be submitted to the Department for approval.

The WMP should be developed based on sound guiding principles. EPA’s “Watershed Approach Framework” (EPA 840-S096-001, June 1996) and MDEQ’s “Developing a Watershed Management Plan for Water Quality: An Introductory Guide” (February 2000) may be helpful in establishing a framework for a WMP. Collectively, WMP participants should employ sound scientific data, tools, and techniques in an iterative decision making process. The typical steps in a watershed planning process, that may be used to develop a WMP, are as follows:

1) assessment and characterization of the natural resources and the communities that depend upon them,
2) goal setting and identification of environmental objectives based on the condition or vulnerability of resources and the needs of the aquatic ecosystem and the people within the community,
3) identification of priority problems and opportunities (including any TMDL established for a parameter within the watershed that may be affected by storm water),
4) development of specific management options and action plans,
5) implementation of the action plans, and
6) evaluation of effectiveness and revision of plans, as needed.

The permittee shall use the WMP to develop a SWPPI that specifies the permittee’s obligations under the WMP. In order to produce an approvable SWPPI, as a minimum, a WMP shall contain:

- an assessment of the nature and status of the watershed ecosystem to the extent necessary to achieve the purpose of the WMP;
- short-term measurable objectives for the watershed;
- long-term goals for the watershed (which shall include both the protection of designated uses of the receiving waters as defined in Michigan's Water Quality Standards, and attaining compliance with any TMDL established for a parameter within the watershed);
- determination of the actions needed to achieve the short-term measurable objectives for the watershed;
PART I

Section B. Watershed Management

- determination of the actions needed to achieve the long-term goals for the watershed;
- assessment of both the benefits and costs of the actions identified above (a "cost/benefit analysis" is not required);
- commitments, identified by specific permittee or others as appropriate, to implement actions by specified dates necessary to achieve the short-term measurable objectives;
- commitments, identified by specific permittee or others as appropriate, to implement actions by specified dates necessary to initiate achievement of the long-term goals; and
- methods for evaluation of progress, which may include chemical or biological indicators, flow measurements, erosion indices, and public surveys.

The permittee-specific commitments shall be elaborated upon and included in the SWPPI (Part I.B.2.a.) and may include modifications to the previously submitted IDEP and PEP.

Watershed Management is an iterative process of decision making. Therefore, revisions to the WMP are expected from time to time. By the date specified in the certificate of coverage, a revised WMP (or a written determination not to revise the WMP) shall be submitted to the Department for comment.

2. Storm Water Pollution Prevention Initiative (SWPPI)

a. SWPPI Submission

By the date specified in the certificate of coverage, the permittee shall submit an approvable SWPPI and implementation schedule to the Department. The SWPPI shall be designed and implemented to reduce the discharge of pollutants to the maximum extent practicable, shall be consistent with the WMP developed under Part I.B.1., shall include those actions expected to be implemented over the term of this permit, shall identify methods for determining the effectiveness of the actions to be implemented, and may cover urbanized areas (with a deferred WMP) outside of the watershed boundary included in the WMP. The SWPPI shall be implemented upon approval of the Department.

1) The submission of the SWPPI shall, at a minimum, include the following:

a) The actions required of the permittee in the WMP in accordance with the dates specified, taking into account any specific disagreements to the WMP which were provided by the permittee and included in the appendix to the WMP. (Note: if the WMP requirement has been deferred until a later time, as indicated on the certificate of coverage, the SWPPI shall initially be developed without consideration of the WMP.)

b) The evaluation and implementation of pollution prevention and good housekeeping activities, as appropriate. This item shall include a training and inspection program for staff and contractors employed by the permittee in activities that may affect storm water runoff.

The permittee shall include the following activities for inclusion in the SWPPI, or explain why the activities do not apply:

(1) maintenance activities, maintenance schedules, and inspection procedures for storm water structural controls to reduce pollutants (including floatables) in discharges from the permittee's separate storm water drainage system;

(2) controls for reducing or eliminating the discharges of pollutants from streets, roads, highways, parking lots, and maintenance garages;

(3) procedures for the proper disposal of operation and maintenance waste from the separate storm water drainage system (dredge spoil, accumulated sediments, floatables, and other debris);

(4) ways to ensure that flood management projects assess the impacts on the water quality of the receiving waters and, whenever possible, examine existing water quantity structures for incorporation of additional water quality protection devices or practices; and
PART I

Section B. Watershed Management

(5) Implementation of controls to reduce the discharge of pollutants related to application of pesticides, herbicides, and fertilizers applied in the permittee's regulated area.

c) The development, implementation, and enforcement of a comprehensive storm water management program for post-construction controls for areas of new development and significant redevelopment. The goal is to protect the designated uses in the receiving water from the effects commonly associated with urbanization. These effects include: “flashiness” (higher peak flows and lower base flows), stream-bank erosion, increased stream temperature and pollutant load, reduced bank vegetation, and degraded fish and other aquatic habitats.

The permittee shall evaluate and implement site appropriate, cost-effective structural and nonstructural best management practices (BMPs) that prevent or minimize the impacts on water quality. Common controls for urbanization include: policies and ordinances to direct growth to identified areas, to limit the rate and volume of storm water discharged to pre-developmental hydrologic levels, to protect sensitive areas such as wetlands and riparian areas, and to maintain and/or increase open spaces (including a dedicated funding source for open space acquisition); encouraging infill development in higher density urban areas and areas with existing infrastructure; establishing in-stream maximum flow targets designed to minimize stream bank erosion and maintain healthy aquatic populations; and coordinating release volumes and rates from detention basins to achieve in-stream maximum flow targets. These controls shall have associated requirements for their long-term operation and maintenance to retain the level of water quality protection over time.

d) The methods of assessing progress in storm water pollution prevention.

2) If the WMP has been deferred for a portion of a permittee’s urbanized area, as indicated on the certificate of coverage, the permittee’s submission of the SWPPI shall include requirements for those urbanized areas not covered by the WMP. The permittee shall select one of the following two options for covering urbanized areas with deferred WMPs:

a) Option 1: The permittee shall submit a request to extend the coverage of an existing SWPPI throughout the permittee’s urbanized areas where a WMP has been deferred. The permittee shall be aware that additional actions may be required in this area. Under this option, the permittee shall perform a cursory assessment of the watershed(s) in the urbanized areas where a WMP is deferred, and identify concerns that are not addressed under the existing SWPPI prepared consistent with the WMP. These concerns may be inferred from significant differences between watershed characteristics in the two areas. Some examples of categories to consider include: stream type (main channel vs. headwaters), land use (agricultural vs. residential vs. industrial/commercial), age of development, historical impacts on the watershed, topography, and soil type. If the comparison shows that the two areas are significantly different, the permittee’s SWPPI submission shall include additional approvable actions to address the deficiencies of the SWPPI in the deferred area.

b) Option 2: The permittee shall submit additional information as necessary to comply with the following requirements for urbanized areas where the WMP has been deferred:

   (1) Public Involvement and Participation

   Public input shall be encouraged in areas where the WMP is deferred. Appropriate BMPs for this minimum measure and measurable goals for each BMP shall be submitted to the department as part of the annual report. The following minimum actions shall be taken to encourage public input:

   (a) The permittee shall follow local public notice requirements, as appropriate, when notifying the public that a SWPPI must be implemented. Copies of the permittee’s SWPPI shall be available for public inspection, and the public shall be notified of when and where it is available.

   (b) The permittee shall establish and implement a citizen advisory committee for the purpose of encouraging public involvement in all aspects of the SWPPI.
PART I

Section B. Watershed Management

(c) The permittee shall pursue cooperation with local stream or watershed protection organizations, if any, by informing them of activities under the SWPPI, providing copies of the preliminary and final SWPPI and pursuing input on the SWPPI, seeking volunteer assistance including water quality monitoring assistance, and seeking ways to meet permit requirements by assisting the local organizations with their ongoing programs for water resource protection and enhancement.

(2) Post-Construction Storm Water Management Program for New Development and Redevelopment Projects

The permittee shall develop, implement and enforce a program to address storm water runoff from new development and redevelopment projects that disturb greater than or equal to one acre, including projects less than one acre that are part of a larger common plan of development or sale, that discharge into the drainage system. The program shall ensure that controls are in place that will prevent or minimize water quality impacts. Appropriate BMPs for this minimum measure and measurable goals for each BMP shall be submitted to the department as part of the annual report.

Under the program for new development and redevelopment projects the permittee shall:

(a) Develop and implement a comprehensive storm water management plan for development, implementation, and enforcement of controls watershed-wide or jurisdiction-wide to protect the designated uses in all receiving waters within urbanized areas from the effects commonly associated with urbanization. Common effects of urbanization to be considered under the comprehensive management plan include stream “flashiness” (higher peak flow and lower base flow), stream-bank erosion, increased stream temperature and pollutant load, reduced stream-bank vegetation, and degraded fish and aquatic habitat. Example comprehensive management plan controls for prevention of impacts from urbanization include policies and ordinances that provide requirements and standards for directing growth to identified areas, protecting sensitive areas such as wetlands and riparian areas, maintaining and/or increasing open space (including a dedicated funding source for open space acquisition), encouraging infill development in higher density urban areas and areas with existing infrastructure, establishing in-stream maximum flow targets designed to minimize stream bank erosion and maintain healthy fish populations, and coordinating release volumes and rates from detention basins to achieve in-stream maximum flow targets.

(b) Develop and implement ordinances or other regulatory mechanisms to address post construction storm water runoff from new development and redevelopment projects to the extent allowable under state or local law. Objectives of the ordinances or other regulatory mechanisms should be to protect receiving water quality from the impacts of development and limit the rate and volume of storm water discharges from any specific site during and following development or redevelopment. The ordinances or other regulatory mechanisms shall include the following:

(i) Requirements for implementation of appropriate non-structural and/or structural BMPs. Non-structural BMPs are preventative actions that involve management and source controls. Examples include: buffer preservation along water bodies, establishment of easements for vegetative filters and infiltration, education programs for developers and the public about project designs that minimize water quality and quantity impacts, minimum disturbance of soils and vegetation, planting native vegetation, restrictions on directly connected impervious areas, and incentives for reducing imperviousness. Structural BMPs are physical controls that improve water quality, including storage practices. Examples of structural BMPs include: wet ponds and extended-detention outlet structures; vegetative buffers; filtration practices such as grassed swales, sand filters and filter strips; and infiltration practices such as infiltration basins, infiltration trenches, rain gardens, and infiltration islands in parking lots.

(ii) Requirements for adequate long-term operation and maintenance of BMPs.
PART I

Section B. Watershed Management

(iii) Requirements to control sediment discharges from new developments and redevelopments that result from soil erosion after the local soil erosion and sedimentation permit and federal permit by rule are no longer in effect.

(iv) Requirements for regulating the rate at which storm water flows into the drainage system.

(c) Develop and implement a process for review of post-construction storm water BMPs in initial site plans, as applicable.

(d) Minimize the occurrence of illicit discharges and spills into the drainage system by reviewing site plans for commercial operations to ensure that storm drain inlets are adequately isolated from pollutant sources. Equipment washing and waste material handling shall not result in discharge of wastes to the drainage system. Polluting materials, as defined in the Part 5 Rules (Rules 324.2001 through 324.2009 of the Michigan Administrative Code), shall be stored only in areas that provide secondary containment in accordance with state and federal law.

(3) Additional BMPs and Measurable Goals

If requested by the Department, the permittee shall submit appropriate BMPs, and measurable goals for each BMP, as part of the annual report. The Department may request specific information and implementation schedules for any or all of the following minimum measures:

(a) illicit discharge elimination program,

(b) public education program, and

(c) pollution prevention/good housekeeping for municipal operations.

b. SWPPI Revisions

By the date specified in the certificate of coverage, a revised SWPPI (incorporating current permit requirements or a written determination, with support, not to revise the SWPPI) shall be submitted to the Department for approval. The revised SWPPI shall be consistent with revisions made to the WMP.

c. Designated Contact Person

The permittee may replace the storm water program manager at any time and shall notify the Department within ten days after the replacement.

d. Retention of Records

The latest approved version of the SWPPI shall be retained until at least three years after coverage under this permit terminates. All records and information resulting from the assessment of SWPPI effectiveness, including all records of analyses performed and calibration and maintenance of instrumentation and recordings from continuous monitoring instrumentation, shall be retained for a minimum of three years or longer if requested by the Department or the Regional Administrator.
PART I

Section B. Watershed Management

3. **Annual Progress Report**

   By the date indicated on the certificate of coverage, a report shall be submitted to the Department on the implementation status of this permit and the progress of pollution prevention. The progress report shall cover all of the decisions, actions, and results performed as part of this permit during the previous year. **Annually thereafter**, the permittee shall submit progress reports to the Department, unless a different reporting cycle is specified by the Department.

   At a minimum, the progress reports shall cover the following subjects:

   a. **IDEP**

      1) The permittee shall provide documentation of the actions taken to eliminate illicit discharges and evaluate the effectiveness of the program. For significant illicit discharges, the permittee shall list the pollutant(s) of concern, the estimated volume and load discharged, and the locations of the discharge into both the permittee's separate storm water sewer system and the receiving water. The permittee shall include certification of any changes made to the IDEP as requested by the Department in Part I.A.3.

      2) The permittee shall summarize the status of the program to minimize seepage from sanitary sewers and on-site sewage disposal systems into the permittee’s separate storm water drainage system.

      3) The permittee shall provide schedules for elimination of illicit connections that have been identified but have yet to be eliminated.

   b. **PEP**

      The permittee shall provide documentation of the public education effort and a summary of the evaluation of its effectiveness. The permittee shall include certification of any changes made to the PEP as requested by the Department in Part I.A.3.

   c. **New Point Source Discharges of Storm Water**

      The permittee shall provide the information requested in Part I.A.4. of this permit on the discovery of new storm water point sources to the separate storm water drainage system.

   d. **SWPPI**

      The permittee shall provide the following information:

      1) The permittee shall describe the compliance status of the permittee-specific SWPPI actions and implementation schedules for the permittee’s regulated areas. This review shall cover all of the permittee’s commitments from the WMP, and the SWPPI’s conditions for pollution prevention/good housekeeping and post-construction BMPs.

      2) If the permittee has urbanized areas with a deferred WMP and selected Option 1, the permittee shall describe the status of any additional requirements for any areas with a deferred WMP.

      3) If the permittee has urbanized areas with a deferred WMP and selected Option 2, the permittee shall describe the status for each of the three requirements listed in Part I.B.2.a.2) b). This shall include a listing of the BMPs that will be or have been implemented, descriptions of the measurable goals for each BMP, progress made towards meeting the measurable goals, upcoming actions, and any changes or updates to the BMPs or measurable goals to which the permittee has previously committed to do or meet.
PART I

Section B. Watershed Management

4) The effectiveness of the actions shall be discussed and the methods for this determination shall be reviewed. The permittee shall also include any proposed revisions to the SWPPI.

5) The permittee shall report on the status of any watershed planning decisions for the permittee’s regulated area where a WMP has been deferred.

6) If necessary, the permittee may update both the characterization of the watershed(s) in the deferred area, and the comparison to the jurisdiction’s watershed that is covered by the WMP. The permittee shall update any additional actions that have been included as part of the SWPPI as a result of any significant discrepancy between the watersheds.

e. Other Actions
The permittee shall submit any information for any other actions taken to reduce the discharge of pollutants in storm water.

f. Nested Drainage System Agreements
Permittees which are primary jurisdictions shall update the list of each nested jurisdictional area or drainage system that should have its own separate storm water drainage system permit, originally submitted as part of the application requirements in Part I.A.2. of this permit.

g. Special Reporting Requirements
The University of Michigan (Ann Arbor Campus), the Michigan Department of Transportation, and the Cities of Ann Arbor, Flint, Grand Rapids, Livonia, Sterling Heights, and Warren shall submit the following additional information:

a) Environmental Impacts [40 CFR 122.42(c)(7)]
The permittee shall provide an assessment of the pollution reduction and probable receiving water quality impacts associated with program implementation. When applicable, a statement shall be included regarding any negative water quality impacts that may have occurred as a result of any illicit discharges or accidental spills during the report cycle.

b) Data and Results [40 CFR 122.42(c)(4)]
The permittee shall provide a summary of all information collected and analyzed, including monitoring data, if any, during the report cycle.

c) BMP Changes [40 CFR 122.42(c)(2)]
The permittee shall describe any planned changes in identified BMPs or measurable goals for those BMPs.

d) Revised Fiscal Analysis [40 CFR 122.42(c)(3)]
The permittee shall provide a summary of revisions, if necessary, to the fiscal analysis reported during the previous permit, pursuant to permit application requirements [40 CFR 122.26(d)(2)(vi)].

e) Annual Budget [40 CFR 122.42(c)(5)]
The permittee shall provide the previous reporting cycle’s expenditures and proposed budget for the reporting cycle following the report.
PART II

Section A. Definitions

This list of definitions may include terms not applicable to this permit.

**Acute toxic unit (TU₅₅)** means 100/LC₅₀ where the LC₅₀ is determined from a whole effluent toxicity (WET) test which produces a result that is statistically or graphically estimated to be lethal to 50% of the test organisms.

**Best management practices (BMPs)** means structural devices or non-structural practices that are designed to prevent pollutants from entering into storm water flows, to direct the flow of storm water, or to treat polluted storm water flows.

**Bioaccumulative chemical of concern (BCC)** means a chemical which, upon entering the surface waters, by itself or as its toxic transformation product, accumulates in aquatic organisms by a human health bioaccumulation factor of more than 1000 after considering metabolism and other physiochemical properties that might enhance or inhibit bioaccumulation. The human health bioaccumulation factor shall be derived according to R 323.1057(5). Chemicals with half-lives of less than 8 weeks in the water column, sediment, and biota are not BCCs. The minimum bioaccumulation concentration factor (BAF) information needed to define an organic chemical as a BCC is either a field-measured BAF or a BAF derived using the biota-sediment accumulation factor (BSAF) methodology. The minimum BAF information needed to define an inorganic chemical as a BCC, including an organometal, is either a field-measured BAF or a laboratory-measured bioconcentration factor (BCF). The BCCs to which these rules apply are identified in Table 5 of R 323.1057 of the Water Quality Standards.

**Biosolids** are the solid, semisolid, or liquid residues generated during the treatment of sanitary sewage or domestic sewage in a treatment works. This includes, but is not limited to, scum or solids removed in primary, secondary, or advanced wastewater treatment processes and a derivative of the removed scum or solids.

**Bulk biosolids** means biosolids that are not sold or given away in a bag or other container for application to a lawn or home garden.

**Chronic toxic unit (TUₚₙ)** means 100/MATC or 100/IC₂₅, where the maximum acceptable toxicant concentration (MATC) and IC₂₅ are expressed as a percent effluent in the test medium.

**Class B biosolids** refers to material that has met the Class B pathogen reduction requirements or equivalent treatment by a Process to Significantly Reduce Pathogens (PSRP) in accordance with the Part 24 Rules. Processes include aerobic digestion, composting, anaerobic digestion, lime stabilization and air drying.

**Daily concentration** is the sum of the concentrations of the individual samples of a parameter divided by the number of samples taken during any calendar day. If the parameter concentration in any sample is less than the quantification limit, regard that value as zero when calculating the daily concentration. The daily concentration will be used to determine compliance with any maximum and minimum daily concentration limitations (except for pH and dissolved oxygen). When required by the permit, report the maximum calculated daily concentration for the month in the “MAXIMUM” column under “QUALITY OR CONCENTRATION” on the Discharge Monitoring Reports (DMRs).

For pH, report the maximum value of any individual sample taken during the month in the “MAXIMUM” column under “QUALITY OR CONCENTRATION” on the DMRs and the minimum value of any individual sample taken during the month in the “MINIMUM” column under “QUALITY OR CONCENTRATION” on the DMRs. For dissolved oxygen, report the minimum concentration of any individual sample in the “MINIMUM” column under “QUALITY OR CONCENTRATION” on the DMRs.

**Daily loading** is the total discharge by weight of a parameter discharged during any calendar day. This value is calculated by multiplying the daily concentration by the total daily flow and by the appropriate conversion factor. The daily loading will be used to determine compliance with any maximum daily loading limitations. When required by the permit, report the maximum calculated daily loading for the month in the “MAXIMUM” column under “QUANTITY OR LOADING” on the DMRs.

**Department** means the Michigan Department of Environmental Quality.

**Detection level** means the lowest concentration or amount of the target analyte that can be determined to be different from zero by a single measurement at a stated level of probability.
PART II

Section A. Definitions

District Supervisor of the Water Division is identified in the individual certificate of coverage.

Drainage System Operator: See “Municipal Separate Storm Water Drainage System Operator”.

EC₅₀ means a statistically or graphically estimated concentration that is expected to cause 1 or more specified effects in 50% of a group of organisms under specified conditions.

Fecal coliform bacteria 7-day is the geometric mean of the samples collected in any 7-day period. The calculated 7-day value will be used to determine compliance with the maximum 7-day fecal coliform bacteria limitations. When required by the permit, report the maximum calculated 7-day concentration for the month in the “MAXIMUM” column under “QUALITY OR CONCENTRATION” on the DMRs.

Fecal coliform bacteria monthly is the geometric mean of the samples collected in a calendar month (or 30 consecutive days). The calculated monthly value will be used to determine compliance with the maximum monthly fecal coliform bacteria limitations. When required by the permit, report the calculated monthly value in the “AVERAGE” column under “QUALITY OR CONCENTRATION” on the DMRs.

Flow proportioned sample is a composite sample with the sample volume proportional to the effluent flow.

Grab sample is a single sample taken at neither a set time nor flow.

IC₂₅ means the toxicant concentration that would cause a 25% reduction in a nonquantal biological measurement for the test population.

Interference is a discharge which, alone or in conjunction with a discharge or discharges from other sources, both: 1) inhibits or disrupts the POTW, its treatment processes or operations, or its sludge processes, use or disposal; and 2) therefore, is a cause of a violation of any requirement of the POTW’s NPDES permit (including an increase in the magnitude or duration of a violation) or, of the prevention of sewage sludge use or disposal in compliance with the following statutory provisions and regulations or permits issued thereunder (or more stringent state or local regulations): Section 405 of the Clean Water Act, the Solid Waste Disposal Act (SWDA) (including Title II, more commonly referred to as the Resource Conservation and Recovery Act (RCRA), and including state regulations contained in any state sludge management plan prepared pursuant to Subtitle D of the SWDA), the Clean Air Act, the Toxic Substances Control Act, and the Marine Protection, Research and Sanctuaries Act. [This definition does not apply to sample matrix interference.]

LC₅₀ means a statistically or graphically estimated concentration that is expected to be lethal to 50% of a group of organisms under specified conditions.

Land application means spraying or spreading biosolids or a biosolids derivative onto the land surface, injecting below the land surface, or incorporating into the soil so that the biosolids or biosolids derivative can either condition the soil or fertilize crops or vegetation grown in the soil.

MGD means million gallons per day.

Maximum acceptable toxicant concentration (MATC) means the concentration obtained by calculating the geometric mean of the lower and upper chronic limits from a chronic test. A lower chronic limit is the highest tested concentration that did not cause the occurrence of a specific adverse effect. An upper chronic limit is the lowest tested concentration which did cause the occurrence of a specific adverse effect and above which all tested concentrations caused such an occurrence.
PART II

Section A. Definitions

Maximum extent practicable: The Maximum Extent Practicable (MEP) requirement shall be met by adherence to the requirements of the approved Illicit Discharge Elimination Plan, the approved Public Education Plan and the approved Storm Water Pollution Prevention Initiative (SWPPI), in a manner that is environmentally beneficial, technically feasible, and within the permittee's legal authority. The various components of the approved Plans and SWPPI, taken as a whole (rather than individually), shall be sufficient to meet the MEP requirements.

Monthly concentration is the sum of the daily concentrations determined during a reporting month (or 30 consecutive days) divided by the number of daily concentrations determined. The calculated monthly concentration will be used to determine compliance with any maximum monthly concentration limitations. When required by the permit, report the calculated monthly concentration in the “AVERAGE” column under “QUALITY OR CONCENTRATION” on the DMRs.

For minimum percent removal requirements, the monthly influent concentration and the monthly effluent concentration shall be determined. The calculated monthly percent removal, which is equal to 100 times the quantity [1 minus the quantity (monthly effluent concentration divided by the monthly influent concentration)], shall be reported in the "MINIMUM" column under "QUALITY OR CONCENTRATION" on the DMRs.

Monthly frequency of analysis refers to a calendar month. When required by this permit, an analytical result, reading, value or observation must be reported for that period if a discharge occurs during that period.

Monthly loading is the sum of the daily loadings of a parameter divided by the number of daily loadings determined in the reporting month (or 30 consecutive days). The calculated monthly loading will be used to determine compliance with any maximum monthly loading limitations. When required by the permit, report the calculated monthly loading in the “AVERAGE” column under “QUANTITY OR LOADING” on the DMRs.

Municipal Separate Storm Water Drainage System Operator means a public body or statutory housing authority that owns a separate storm water drainage system, or has the power of authority to implement or carry out any of the requirements for storm water pollution control. There may be multiple drainage system operators within the same geographic area or for the same separate storm water drainage system.

NOAEL means the highest tested dose or concentration of a substance that results in no observed adverse effect in exposed test organisms where higher doses or concentrations result in an adverse effect.

National Pretreatment Standards are the regulations promulgated by or to be promulgated by the Federal Environmental Protection Agency pursuant to Section 307(b) and (c) of the Federal Act. The standards establish nationwide limits for specific industrial categories for discharge to a POTW.

Noncontact cooling water is water used for cooling which does not come into direct contact with any raw material, intermediate product, by-product, waste product or finished product.

Nondomestic user is any discharger to a POTW that discharges wastes other than or in addition to water-carried wastes from toilet, kitchen, laundry, bathing or other facilities used for household purposes.

On-site sewage disposal system means a natural system or mechanical device used to collect, treat, and discharge or reclaim wastewater from one or more dwelling units without the use of community-wide sewers or a centralized treatment system.

POTW is a publicly owned treatment works.

Point source means an outfall from a drainage system to waters of the state, or a point where a storm water drainage system discharges into a system operated by another public body.

Pretreatment is reducing the amount of pollutants, eliminating pollutants, or altering the nature of pollutant properties to a less harmful state prior to discharge into a public sewer. The reduction or alteration can be by physical, chemical, or biological processes, process changes, or by other means. Dilution is not considered pretreatment unless expressly authorized by an applicable National Pretreatment Standard for a particular industrial category.
PART II

Section A. Definitions

Quantification level means the measurement of the concentration of a contaminant obtained by using a specified laboratory procedure calculated at a specified concentration above the detection level. It is considered the lowest concentration at which a particular contaminant can be quantitatively measured using a specified laboratory procedure for monitoring of the contaminant.

Quarterly frequency of analysis refers to a three month period, defined as January through March, April through June, July through September, and October through December. When required by this permit, an analytical result, reading, value or observation must be reported for that period if a discharge occurs during that period.

Regional Administrator is the Region 5 Administrator, U.S. EPA, located at R-19J, 77 W. Jackson Blvd., Chicago, Illinois 60604.

Regulated areas means urbanized areas and areas identified by the permit applicant to be subject to a watershed planning process.

Separate storm water drainage system means drainage systems that convey storm water to waters of the state excluding combined sewer systems and sanitary sewer systems (separate storm water drainage systems are not intended to carry sanitary wastewater). The conveyance may be opened or enclosed, and may contain the non-storm water discharges specified in Part I.A.1.c. and d.

Significant industrial user is a nondomestic user that: 1) is subject to Categorical Pretreatment Standards under 40 CFR 403.6 and 40 CFR Chapter I, Subchapter N; or 2) discharges an average of 25,000 gallons per day or more of process wastewater to a POTW (excluding sanitary, noncontact cooling and boiler blowdown wastewater); contributes a process wastestream which makes up five (5) percent or more of the average dry weather hydraulic or organic capacity of the POTW treatment plant; or is designated as such by the permittee as defined in 40 CFR 403.12(a) on the basis that the industrial user has a reasonable potential for adversely affecting the POTW's treatment plant operation or violating any pretreatment standard or requirement (in accordance with 40 CFR 403.8(f)(6)).

Storm water includes storm water runoff, snow melt runoff, and surface runoff and drainage.

Tier I value means a value for aquatic life, human health or wildlife calculated under R 323.1057 of the Water Quality Standards using a tier I toxicity database.

Tier II value means a value for aquatic life, human health or wildlife calculated under R 323.1057 of the Water Quality Standards using a tier II toxicity database.

Toxicity reduction evaluation (TRE) means a site-specific study conducted in a stepwise process designed to identify the causative agents of effluent toxicity, isolate the sources of toxicity, evaluate the effectiveness of toxicity control options, and then confirm the reduction in effluent toxicity.

Urbanized area means a place and the adjacent densely populated territory that together have a minimum population of fifty thousand (50,000) people, as defined by the United States Bureau of the Census and as determined by the latest available decennial census.


Waters of the state means all of the following, but does not include drainage ways and ponds used solely for wastewater conveyance, treatment, or control:

- The Great Lakes and their connecting waters,
- All inland lakes,
- Rivers,
- Streams,
- Impoundments,
- Open drains, and
PART II

Section A. Definitions

- Other surface bodies of water within the confines of the state.

**Weekly frequency of analysis** refers to a calendar week which begins on Sunday and ends on Saturday. When required by this permit, an analytical result, reading, value or observation must be reported for that period if a discharge occurs during that period.

**Yearly frequency of analysis** refers to a calendar year beginning on January 1 and ending on December 31. When required by this permit, an analytical result, reading, value or observation must be reported for that period if a discharge occurs during that period.

**24-Hour composite sample** is a flow proportioned composite sample consisting of hourly or more frequent portions that are taken over a 24-hour period.

**3-Portion composite sample** is a sample consisting of three equal volume grab samples collected at equal intervals over an 8-hour period.

**7-day concentration** is the sum of the daily concentrations determined during any 7 consecutive days in a reporting month divided by the number of daily concentrations determined. The calculated 7-day concentration will be used to determine compliance with any maximum 7-day concentration limitations. When required by the permit, report the maximum calculated 7-day concentration for the month in the “MAXIMUM” column under “QUALITY OR CONCENTRATION” on the DMRs.

**7-day loading** is the sum of the daily loadings of a parameter divided by the number of daily loadings determined during any 7 consecutive days in a reporting month. The calculated 7-day loading will be used to determine compliance with any maximum 7-day loading limitations. When required by the permit, report the maximum calculated 7-day loading for the month in the “MAXIMUM” column under “QUANTITY OR LOADING” on the DMRs.

---

**Preventing Pollution is the Best Solution**

The Michigan Department of Environmental Quality (DEQ) encourages you to consider pollution prevention alternatives. In some cases pollution prevention may allow you to avoid the need to discharge pollutants which would otherwise require permit limitations -- or even avoid the need for permits altogether! Pollution prevention can:

- Save Money
- Reduce Waste
- Aid Permit Compliance
- Protect Our Environment
- Improve Corporate Image
- Reduce Liability

The DEQ is helping Michigan’s industries save money, reduce waste and protect our environment through pollution prevention. DEQ staff can provide pollution prevention assistance through telephone consultations, technical workshops and seminars, and informational publications. They can also put you directly in touch with local support networks and national pollution prevention resources. For more information, contact the Michigan Department of Environmental Quality, Environmental Science and Services Division, at 1-800-662-9278 or visit our homepage at http://www.michigan.gov/deq.
PART II

Section B. Monitoring Procedures

1. Representative Samples
Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge.

2. Test Procedures
Test procedures for the analysis of pollutants shall conform to regulations promulgated pursuant to Section 304(h) of the Federal Act (40 CFR Part 136 - Guidelines Establishing Test Procedures for the Analysis of Pollutants), unless specified otherwise in this permit. Requests to use test procedures not promulgated under 40 CFR Part 136 for pollutant monitoring required by this permit shall be made in accordance with the Alternate Test Procedures regulations specified in 40 CFR 136.4. These requests shall be submitted to the Chief of the Surface Water Permits Section, Water Division, Michigan Department of Environmental Quality, P.O. Box 30273, Lansing, Michigan, 48909-7773. The permittee may use such procedures upon approval.

The permittee shall periodically calibrate and perform maintenance procedures on all analytical instrumentation at intervals to ensure accuracy of measurements. The calibration and maintenance shall be performed as part of the permittee’s laboratory Quality Control/Quality Assurance program.

3. Instrumentation
The permittee shall periodically calibrate and perform maintenance procedures on all monitoring instrumentation at intervals to ensure accuracy of measurements.

4. Recording Results
For each measurement or sample taken pursuant to the requirements of this permit, the permittee shall record the following information: 1) the exact place, date, and time of measurement or sampling; 2) the person(s) who performed the measurement or sample collection; 3) the dates the analyses were performed; 4) the person(s) who performed the analyses; 5) the analytical techniques or methods used; 6) the date of and person responsible for equipment calibration; and 7) the results of all required analyses.

5. Records Retention
All records and information resulting from the monitoring activities required by this permit including all records of analyses performed and calibration and maintenance of instrumentation and recordings from continuous monitoring instrumentation shall be retained for a minimum of three (3) years, or longer if requested by the Regional Administrator or the Department.
PART II

Section C. Reporting Requirements

1. Start-up Notification
If the permittee will not discharge during the first 60 days following the effective date of the facility’s certificate of coverage, the permittee shall notify the Department within 14 days following the effective date of the certificate of coverage, and then 60 days prior to the commencement of the discharge.

2. Submittal Requirements for Self-Monitoring Data
Unless instructed on the effluent limits page to conduct “retained self-monitoring,” the permittee shall submit self-monitoring data on the Environmental Protection Agency's Discharge Monitoring Report (DMR) forms (monthly summary information) and the Department's Daily Discharge Monitoring Report forms (daily information) to PCS-Data Entry, Water Division, Michigan Department of Environmental Quality, P.O. Box 30273, Lansing, Michigan, 48909-7773, for each calendar month of the authorized discharge period(s). The forms shall be postmarked no later than the 10th day of the month following each month of the authorized discharge period(s).

Alternative Daily Discharge Monitoring Report formats may be used if they provide equivalent reporting details and are approved by the Department. For information on electronic submittal of this information, contact the Department.

3. Retained Self-Monitoring Requirements
If instructed on the effluent limits page (or otherwise authorized by the Department in accordance with the provisions of this permit) to conduct retained self-monitoring, the permittee shall maintain a year-to-date log of retained self-monitoring results and, upon request, provide such log for inspection to the staff of the Department (Department as defined on the certificate of coverage). Retained self-monitoring results are public information and shall be promptly provided to the public upon written request from the public.

The permittee shall certify, in writing, to the Department, on or before January 10th of each year, that: 1) all retained self-monitoring requirements have been complied with and a year-to-date log has been maintained; and 2) the application on which this permit is based still accurately describes the discharge. With this annual certification, the permittee shall submit a summary of the previous year’s monitoring data. The summary shall include maximum values for samples to be reported as daily maximums and/or monthly maximums and minimum values for any daily minimum samples.

Retained self-monitoring may be denied to a permittee by notification in writing from the Department. In such cases, the permittee shall submit self-monitoring data in accordance with Part II.C.2., above. Such a denial may be rescinded by the Department upon written notification to the permittee.

Reissuance or modification of this permit or reissuance or modification of a permittee’s authorization to discharge shall not affect previous approval or denial for retained self-monitoring unless the Department provides notification in writing to the permittee.

4. Additional Monitoring by Permittee
If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified above, the results of such monitoring shall be included in the calculation and reporting of the values required in the Discharge Monitoring Report. Such increased frequency shall also be indicated.

Monitoring required pursuant to Part 41 of the Michigan Act or Rule 35 of the Mobile Home Park Commission Act (Act 96 of the Public Acts of 1987) for assurance of proper facility operation shall be submitted as required by the Department.
PART II

Section C. Reporting Requirements

5. Compliance Dates Notification

Within 14 days of every compliance date specified in this permit, the permittee shall submit a written notification to the Department indicating whether or not the particular requirement was accomplished. If the requirement was not accomplished, the notification shall include an explanation of the failure to accomplish the requirement, actions taken or planned by the permittee to correct the situation, and an estimate of when the requirement will be accomplished. If a written report is required to be submitted by a specified date and the permittee accomplishes this, a separate written notification is not required.

6. Noncompliance Notification

Compliance with all applicable requirements set forth in the Federal Act, Parts 31 and 41 of the Michigan Act, and related regulations and rules is required. All instances of noncompliance shall be reported as follows:

a. 24-hour reporting - Any noncompliance which may endanger health or the environment (including maximum daily concentration discharge limitation exceedances) shall be reported, verbally, within 24 hours from the time the permittee becomes aware of the noncompliance. A written submission shall also be provided within five (5) days.

b. other reporting - The permittee shall report, in writing, all other instances of noncompliance not described in a. above at the time monitoring reports are submitted; or, in the case of retained self-monitoring, within five (5) days from the time the permittee becomes aware of the noncompliance.

Written reporting shall include: 1) a description of the discharge and cause of noncompliance; and 2) the period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and the steps taken to reduce, eliminate and prevent recurrence of the noncomplying discharge.

7. Spill Notification

The permittee shall immediately report any release of any polluting material which occurs to the surface waters or groundwaters of the state, unless the permittee has determined that the release is not in excess of the threshold reporting quantities specified in the Part 5 Rules (Rules 324.2001 through 324.2009 of the Michigan Administrative Code), by calling the Department at the number indicated in the certificate of coverage, or if the notice is provided after regular working hours call the Department’s 24-hour Pollution Emergency Alerting System telephone number, 1-800-292-4706 (calls from out-of-state dial 1-517-373-7660).

Within ten (10) days of the release, the permittee shall submit to the Department a full written explanation as to the cause of the release, the discovery of the release, response (clean-up and/or recovery) measures taken, and preventative measures taken or a schedule for completion of measures to be taken to prevent recurrence of similar releases.

8. Upset Noncompliance Notification

If a process "upset" (defined as an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the permittee) has occurred, the permittee who wishes to establish the affirmative defense of upset, shall notify the Department by telephone within 24-hours of becoming aware of such conditions; and within five (5) days, provide in writing, the following information:

a. that an upset occurred and that the permittee can identify the specific cause(s) of the upset;

b. that the permitted wastewater treatment facility was, at the time, being properly operated; and

c. that the permittee has specified and taken action on all responsible steps to minimize or correct any adverse impact in the environment resulting from noncompliance with this permit.

In any enforcement proceedings, the permittee, seeking to establish the occurrence of an upset, has the burden of proof.
PART II

Section C. Reporting Requirements

9. Bypass Prohibition and Notification

a. Bypass Prohibition - Bypass is prohibited unless:

1) bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;

2) there were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate backup equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass; and

3) the permittee submitted notices as required under 9.b. or 9.c. below.

b. Notice of Anticipated Bypass - If the permittee knows in advance of the need for a bypass, it shall submit prior notice to the Department, if possible at least ten (10) days before the date of the bypass, and provide information about the anticipated bypass as required by the Department. The Department may approve an anticipated bypass, after considering its adverse effects, if it will meet the three (3) conditions listed in 9.a. above.

c. Notice of Unanticipated Bypass - The permittee shall submit notice to the Department of an unanticipated bypass by calling the Department at the number indicated in the certificate of coverage (if the notice is provided after regular working hours, use the following number: 1-800-292-4706) as soon as possible, but no later than 24 hours from the time the permittee becomes aware of the circumstances.

d. Written Report of Bypass - A written submission shall be provided within five (5) working days of commencing any bypass to the Department, and at additional times as directed by the Department. The written submission shall contain a description of the bypass and its cause; the period of bypass, including exact dates and times, and if the bypass has not been corrected, the anticipated time it is expected to continue; steps taken or planned to reduce, eliminate, and prevent reoccurrence of the bypass; and other information as required by the Department.

e. Bypass Not Exceeding Limitations - The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions of 9.a., 9.b., 9.c., and 9.d., above. This provision does not relieve the permittee of any notification responsibilities under Part II.C.10. of this permit.

f. Definitions

1) Bypass means the intentional diversion of waste streams from any portion of a treatment facility.

2) Severe property damage means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
PART II

Section C. Reporting Requirements

10. Notification of Changes in Discharge
The permittee shall notify the Department, in writing, within 10 days of knowing, or having reason to believe, that any activity or change has occurred or will occur which would result in the discharge of: 1) detectable levels of chemicals on the current Michigan Critical Materials Register, priority pollutants or hazardous substances set forth in 40 CFR 122.21, Appendix D, or the Pollutants of Initial Focus in the Great Lakes Water Quality Initiative specified in 40 CFR 132.6, Table 6, which were not acknowledged in the application or listed in the application at less than detectable levels; 2) detectable levels of any other chemical not listed in the application or listed at less than detection, for which the application specifically requested information; or 3) any chemical at levels greater than five times the average level reported in the complete application (see the first page of this permit for the date(s) the complete application was submitted). Any other monitoring results obtained as a requirement of this permit shall be reported in accordance with the compliance schedules.

11. Changes in Facility Operations
Any anticipated action or activity, including but not limited to facility expansion, production increases, or process modification, which will result in new or increased loadings of pollutants to the receiving waters must be reported to the Department by a) submission of an increased use request (application) and all information required under Rule 323.1098 (Antidegradation) of the Water Quality Standards or b) by notice if the following conditions are met: 1) the action or activity will not result in a change in the types of wastewater discharged or result in a greater quantity of wastewater than currently authorized by this permit and certificate of coverage; 2) the action or activity will not result in violations of the effluent limitations specified in this permit; 3) the action or activity is not prohibited by the requirements of Part II.C.12.; and 4) the action or activity will not require notification pursuant to Part II.C.10. Following such notice, the certificate of coverage may be modified according to applicable laws and rules to specify and limit any pollutant not previously limited.

12. Bioaccumulative Chemicals of Concern (BCC)
Consistent with the requirements of Rules 323.1098 and 323.1215 of the Michigan Administrative Code, the permittee is prohibited from undertaking any action that would result in a lowering of water quality from an increased loading of a BCC unless an increased use request and antidegradation demonstration have been submitted and approved by the Department.

13. Transfer of Ownership or Control
In the event of any change in control or ownership of facilities from which the authorized discharge emanates, the permittee shall notify the succeeding owner or controller of the existence of this permit and certificate of coverage by letter, a copy of which shall be forwarded to the Department 30 days prior to the actual transfer of ownership or control.
PART II

Section D. Management Responsibilities

1. Duty to Comply
All discharges authorized herein shall be consistent with the terms and conditions of this permit and the facility’s certificate of coverage (COC). The discharge of any pollutant identified in this permit and/or the facility’s COC more frequently than or at a level in excess of that authorized shall constitute a violation of the permit.

It is the duty of the permittee to comply with all the terms and conditions of this permit and the facility’s COC. Any noncompliance with the Effluent Limitations, Special Conditions, or terms of this permit or the facility’s COC constitutes a violation of the Michigan Act and/or the Federal Act and constitutes grounds for enforcement action; for COC termination, revocation and reissuance, or modification; or denial of an application for permit or COC renewal.

2. Operator Certification
The permittee shall have the waste treatment facilities under direct supervision of an operator certified at the appropriate level for the facility certification by the Department, as required by Sections 3110 and 4104 of the Michigan Act.

3. Facilities Operation
The permittee shall, at all times, properly operate and maintain all treatment or control facilities or systems installed or used by the permittee to achieve compliance with the terms and conditions of this permit. Proper operation and maintenance includes adequate laboratory controls and appropriate quality assurance procedures.

4. Power Failures
In order to maintain compliance with the effluent limitations of this permit and prevent unauthorized discharges, the permittee shall either:

a. provide an alternative power source sufficient to operate facilities utilized by the permittee to maintain compliance with the effluent limitations and conditions of this permit; or
b. upon the reduction, loss, or failure of one or more of the primary sources of power to facilities utilized by the permittee to maintain compliance with the effluent limitations and conditions of this permit, the permittee shall halt, reduce or otherwise control production and/or all discharge in order to maintain compliance with the effluent limitations and conditions of this permit.

5. Adverse Impact
The permittee shall take all reasonable steps to minimize any adverse impact to the surface waters or groundwaters of the state resulting from noncompliance with any effluent limitation specified in this permit including, but not limited to, such accelerated or additional monitoring as necessary to determine the nature and impact of the discharge in noncompliance.

6. Containment Facilities
The permittee shall provide facilities for containment of any accidental losses of polluting materials in accordance with the requirements of the Part 5 Rules (Rules 324.2001 through 324.2009 of the Michigan Administrative Code). For a Publicly Owned Treatment Work (POTW), these facilities shall be approved under Part 41 of the Michigan Act.
PART II

Section D. Management Responsibilities

7. Waste Treatment Residues
Residuals (i.e. solids, sludges, biosolids, filter backwash, scrubber water, ash, grit or other pollutants) removed from or resulting from treatment or control of wastewaters, shall be disposed of in an environmentally compatible manner and according to applicable laws and rules. These laws may include, but are not limited to, the Michigan Act, Part 31 for protection of water resources, Part 55 for air pollution control, Part 111 for hazardous waste management, Part 115 for solid waste management, Part 121 for liquid industrial wastes, Part 301 for protection of inland lakes and streams, and Part 303 for wetlands protection. Such disposal shall not result in any unlawful pollution of the air, surface waters or groundwaters of the state.

8. Treatment System Closure
In the event that discharges from a treatment system are planned to be eliminated, the permittee shall submit a closure plan to the Department for approval. The closure plan shall include characterization of any wastewater and residuals which will remain on-site after the discharges are eliminated, along with disposal methods, proposed schedule, and any other relevant information as required by the Department. Closure activities involving waste treatment residuals shall be consistent with Part II.D.7. of this permit.

The permittee shall implement the closure activities in accordance with the approved plan. Any wastewater or residual disposal inconsistent with the approved plan shall be considered a violation of this permit. After proper closure of the treatment system, the certificate of coverage may be terminated.

9. Right of Entry
The permittee shall allow the Department, any agent appointed by the Department or the Regional Administrator, upon the presentation of credentials:

a. to enter upon the permittee’s premises where an effluent source is located or in which any records are required to be kept under the terms and conditions of this permit; and

b. at reasonable times to have access to and copy any records required to be kept under the terms and conditions of this permit; to inspect process facilities, treatment works, monitoring methods and equipment regulated or required under this permit; and to sample any discharge of pollutants.

10. Availability of Reports
Except for data determined to be confidential under Section 308 of the Federal Act and Rule 2128 (Rule 323.2128 of the Michigan Administrative Code), all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Department and the Regional Administrator. As required by the Federal Act, effluent data shall not be considered confidential. Knowingly making any false statement on any such report may result in the imposition of criminal penalties as provided for in Section 309 of the Federal Act and Sections 3112, 3115, 4106 and 4110 of the Michigan Act.
PART II

Section E. Activities Not Authorized by This Permit

1. **Discharge to the Groundwaters**
   This permit does not authorize any discharge to the groundwaters. Such discharge may be authorized by a groundwater discharge permit issued pursuant to the Michigan Act.

2. **Facility Construction**
   This permit does not authorize or approve the construction or modification of any physical structures or facilities. Approval for such construction for a POTW must be by permit issued under Part 41 of the Michigan Act. Approval for such construction for a mobile home park, campground or marina shall be from the Water Division, Michigan Department of Environmental Quality. Approval for such construction for a hospital, nursing home or extended care facility shall be from the Division of Health Facilities and Services, Michigan Department of Consumer and Industry Services upon request.

3. **Civil and Criminal Liability**
   Except as provided in permit conditions on "Bypass" (Part II.C.9. pursuant to 40 CFR 122.41(m)), nothing in this permit shall be construed to relieve the permittee from civil or criminal penalties for noncompliance, whether or not such noncompliance is due to factors beyond the permittee’s control, such as accidents, equipment breakdowns, or labor disputes.

4. **Oil and Hazardous Substance Liability**
   Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties to which the permittee may be subject under Section 311 of the Federal Act except as are exempted by federal regulations.

5. **State Laws**
   Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties established pursuant to any applicable state law or regulation under authority preserved by Section 510 of the Federal Act.

6. **Property Rights**
   The issuance of this permit and certificate of coverage does not convey any property rights in either real or personal property, or any exclusive privileges, nor does it authorize violation of any federal, state or local laws or regulations, nor does it obviate the necessity of obtaining such permits or approvals from other units of government as may be required by law.
SWAG Contact Information
<table>
<thead>
<tr>
<th>Membership List</th>
<th>Telephone</th>
<th>Fax</th>
<th>E-Mail Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson, Eckstein &amp; Westrick, Inc.</td>
<td>Scott Lockwood</td>
<td>(586) 726-1234</td>
<td>(586) 726-8780</td>
</tr>
<tr>
<td></td>
<td>Hala Baroudi</td>
<td>(586) 726-1234</td>
<td>(586) 726-8780</td>
</tr>
<tr>
<td>Clinton River Watershed Council</td>
<td>Gary Morgan</td>
<td>(248) 601-0606</td>
<td>(248) 601-1280</td>
</tr>
<tr>
<td></td>
<td>Tracie Beasley</td>
<td>(248) 601-0606</td>
<td>(248) 601-1280</td>
</tr>
<tr>
<td>Clinton Township</td>
<td>Mary Bednar, Engineer</td>
<td>(586) 286-9387</td>
<td>(586) 228-1770</td>
</tr>
<tr>
<td>East Detroit Public Schools</td>
<td>Kerry L. Weishaupt, Director</td>
<td>(586) 445-4670</td>
<td>(586) 445-4674</td>
</tr>
<tr>
<td>Eastpointe</td>
<td>Greg Brown, Director of Public Works &amp; Services</td>
<td>(586) 445-5040</td>
<td>(586) 445-5044</td>
</tr>
<tr>
<td>Environmental Consulting &amp; Technology, Inc.</td>
<td>Olivia Olsztyn-Budry</td>
<td>(586) 465-2583</td>
<td>(586) 465-4673</td>
</tr>
<tr>
<td>FTC &amp; H</td>
<td>Fred Cowles</td>
<td>(517) 622-6105</td>
<td>(517) 627-1433</td>
</tr>
<tr>
<td>Grosse Pointe</td>
<td>Michael Overton, City Manager</td>
<td>(313) 885-5800</td>
<td>(313) 885-0820</td>
</tr>
<tr>
<td></td>
<td>Frank Schulte, Public Service Supervisor</td>
<td>(313) 417-1189</td>
<td>(313) 885-0820</td>
</tr>
<tr>
<td>Grosse Pointe Farms</td>
<td>Matthew Tepper, Asst. City Manager</td>
<td>(313) 885-6600</td>
<td>(313) 885-0917</td>
</tr>
<tr>
<td></td>
<td>Terrance Brennan, Director of Public Services</td>
<td>(313) 885-6600</td>
<td>(313) 885-0917</td>
</tr>
<tr>
<td></td>
<td>Scott Homminga, Water Superintendent</td>
<td>(313) 343-2328</td>
<td>(313) 885-0917</td>
</tr>
<tr>
<td>Grosse Pointe Park</td>
<td>Dale Krajniak, City Manager</td>
<td>(313) 822-6200</td>
<td>(313) 822-1280</td>
</tr>
<tr>
<td></td>
<td>Chris Riemel, Director – Public Services</td>
<td>(313) 822-6200</td>
<td>(313) 822-1280</td>
</tr>
<tr>
<td></td>
<td>Pat Thomas, Supervisor – DPW</td>
<td>(313) 822-5100</td>
<td>(313) 822-1280</td>
</tr>
<tr>
<td>Grosse Pointe Shores</td>
<td>Michael Kenyon, City Manager</td>
<td>(313) 881-6565</td>
<td>(313) 881-2622</td>
</tr>
<tr>
<td></td>
<td>Brett Smith, Director – DPW</td>
<td>(313) 886-0020</td>
<td>(313) 881-5417</td>
</tr>
<tr>
<td>Grosse Pointe Woods</td>
<td>Cliff Maison, City Manager</td>
<td>(313) 343-2450</td>
<td>(313) 343-2658</td>
</tr>
<tr>
<td></td>
<td>Joe Shock, Superintendent – DPW</td>
<td>(313) 343-2460</td>
<td>(313) 343-2622</td>
</tr>
<tr>
<td></td>
<td>Joe Ahee, Director of Public Works</td>
<td>(313) 343-2460</td>
<td>(313) 343-2622</td>
</tr>
<tr>
<td>Harper Woods</td>
<td>Bill Snyder, Superintendent of Public Works</td>
<td>(313) 343-2570</td>
<td>(313) 343-2572</td>
</tr>
<tr>
<td></td>
<td>James Leidlein, City Manager</td>
<td>(313) 343-2505</td>
<td>(313) 343-2507</td>
</tr>
<tr>
<td>Harrison Township</td>
<td>Bill Kinney, Utilities Director</td>
<td>(586) 466-1426</td>
<td>(586) 465-2618</td>
</tr>
<tr>
<td>Hubbell Roth &amp; Clark</td>
<td>Bill Stone</td>
<td>(248) 454-6326</td>
<td>(248) 454-6312</td>
</tr>
<tr>
<td></td>
<td>Lori Tuchman</td>
<td>(248) 454-6300</td>
<td>(248) 454-6312</td>
</tr>
<tr>
<td>Organization</td>
<td>Telephone</td>
<td>Fax</td>
<td>E-Mail Address</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>----------------------------------------------------</td>
</tr>
<tr>
<td><strong>Lake Shore Public Schools</strong></td>
<td>(586) 285-8550</td>
<td>(586) 285-8551</td>
<td><a href="mailto:dkling@lsps.org">dkling@lsps.org</a></td>
</tr>
<tr>
<td>Donald Kling, Director, Dept. of Facilities &amp; Transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Lakeview Public Schools</strong></td>
<td>(586) 445-4015</td>
<td>(586) 445-4029</td>
<td>k <a href="mailto:paulson@scslakeview.k12.com">paulson@scslakeview.k12.com</a></td>
</tr>
<tr>
<td>Karl Paulson, Asst. Supervisor for Human Resources &amp; Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Macomb County Health Department</strong></td>
<td>(586) 469-5236</td>
<td>(586) 469-6534</td>
<td><a href="mailto:gary.white@macombcountymi.gov">gary.white@macombcountymi.gov</a></td>
</tr>
<tr>
<td>Gary White, Assistant Director, Environmental Health</td>
<td>(586) 469-5236</td>
<td>(586) 469-6534</td>
<td><a href="mailto:steve.lichota@macombcountymi.gov">steve.lichota@macombcountymi.gov</a></td>
</tr>
<tr>
<td>Steve Lichota</td>
<td>(586) 469-5236</td>
<td>(586) 469-6534</td>
<td><a href="mailto:cole.shoemaker@macombcountymi.gov">cole.shoemaker@macombcountymi.gov</a></td>
</tr>
<tr>
<td>Cole Shoemaker</td>
<td>(586) 469-5236</td>
<td>(586) 469-6534</td>
<td><a href="mailto:steve.schmidt@macombcountymi.gov">steve.schmidt@macombcountymi.gov</a></td>
</tr>
<tr>
<td>Steven Schmidt</td>
<td>(586) 469-5236</td>
<td>(586) 469-6534</td>
<td><a href="mailto:jeffrey.trent@macombcountymi.gov">jeffrey.trent@macombcountymi.gov</a></td>
</tr>
<tr>
<td>Jeffrey Trent</td>
<td>(586) 469-5236</td>
<td>(586) 469-6534</td>
<td><a href="mailto:darren.maser@macombcountymi.gov">darren.maser@macombcountymi.gov</a></td>
</tr>
<tr>
<td>Darren Maser</td>
<td>(586) 469-5236</td>
<td>(586) 469-6534</td>
<td></td>
</tr>
<tr>
<td><strong>Macomb County Department of Planning &amp; Economic Development</strong></td>
<td>(586) 469-5285</td>
<td>(586) 469-6787</td>
<td><a href="mailto:john.crumm@macombcountymi.gov">john.crumm@macombcountymi.gov</a></td>
</tr>
<tr>
<td>John Crumm, Program Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Macomb County Public Works Commissioner</strong></td>
<td>(586) 307-8229</td>
<td>(586) 469-7693</td>
<td><a href="mailto:lynne.seymour@macombcountymi.gov">lynne.seymour@macombcountymi.gov</a></td>
</tr>
<tr>
<td>Lynne Seymour, P.E., Environmental Engineer</td>
<td>(586) 307-8229</td>
<td>(586) 469-7693</td>
<td></td>
</tr>
<tr>
<td>Lara Sucharski, Supervisor, Soil Erosion Division</td>
<td>(586) 307-8271</td>
<td>(586) 307-8264</td>
<td><a href="mailto:lara.sucharski@macombcountymi.gov">lara.sucharski@macombcountymi.gov</a></td>
</tr>
<tr>
<td>Barb Matthews, Environmental Educator</td>
<td>(586) 466-4016</td>
<td>(586) 469-5933</td>
<td><a href="mailto:barbara.matthews@macombcountymi.gov">barbara.matthews@macombcountymi.gov</a></td>
</tr>
<tr>
<td><strong>Macomb County Soil Conservation District</strong></td>
<td>(586) 727-2666</td>
<td>(586) 727-2621</td>
<td><a href="mailto:arowley@macombcd.com">arowley@macombcd.com</a></td>
</tr>
<tr>
<td>Alane Rowley</td>
<td>(586) 727-2666</td>
<td>(586) 727-2621</td>
<td><a href="mailto:steve.johnson@macombcd.com">steve.johnson@macombcd.com</a></td>
</tr>
<tr>
<td>Steve Johnson</td>
<td>(586) 727-2666</td>
<td>(586) 727-2621</td>
<td></td>
</tr>
<tr>
<td><strong>Michigan Department of Environmental Quality</strong></td>
<td>(586) 753-3700</td>
<td>(586) 753-4690</td>
<td></td>
</tr>
<tr>
<td>Bretton Joldersma</td>
<td>(586) 753-3700</td>
<td>(586) 753-4690</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Nightingale</td>
<td>(586) 753-3700</td>
<td>(586) 753-4690</td>
<td></td>
</tr>
<tr>
<td><strong>Road Commission of Macomb County</strong></td>
<td>(586) 463-8671</td>
<td>(586) 463-8683</td>
<td></td>
</tr>
<tr>
<td>Joe Pacella, Development Manager</td>
<td>(586) 463-8671</td>
<td>(586) 463-8683</td>
<td></td>
</tr>
<tr>
<td><strong>Roseville</strong></td>
<td>(586) 445-5410</td>
<td>(586) 445-5402</td>
<td><a href="mailto:struman@roseville-mi.com">struman@roseville-mi.com</a></td>
</tr>
<tr>
<td>Steve Truman, City Manager</td>
<td>(586) 445-5410</td>
<td>(586) 445-5402</td>
<td><a href="mailto:montgomery@roseville-mi.com">montgomery@roseville-mi.com</a></td>
</tr>
<tr>
<td>Joe Montgomery, Director – DPW</td>
<td>(586) 445-5470</td>
<td>(586) 445-5472</td>
<td></td>
</tr>
<tr>
<td>Kevin Walewski, Asst. Director – DPW</td>
<td>(586) 445-5470</td>
<td>(586) 445-5472</td>
<td></td>
</tr>
<tr>
<td><strong>Roseville Community Schools</strong></td>
<td>(586) 445-5698</td>
<td>(586) 445-5592</td>
<td><a href="mailto:jsteenland@roseville.misd.net">jsteenland@roseville.misd.net</a></td>
</tr>
<tr>
<td>John Steenland, Director, Building &amp; Grounds</td>
<td>(586) 445-5698</td>
<td>(586) 445-5592</td>
<td><a href="mailto:dmassey@roseville.k12.mi.us">dmassey@roseville.k12.mi.us</a></td>
</tr>
<tr>
<td>Dan Massey, Coordinator of Trans. &amp; Maintenance</td>
<td>(586) 445-5699</td>
<td>(586) 771-1772</td>
<td></td>
</tr>
<tr>
<td><strong>South Lake Schools</strong></td>
<td>(586) 435-1621</td>
<td>(586) 445-4202</td>
<td><a href="mailto:md1msol@sol.misd.net">md1msol@sol.misd.net</a></td>
</tr>
<tr>
<td>Matthew D. Dishman, Supervisor, Building &amp; Grounds</td>
<td>(586) 435-1621</td>
<td>(586) 445-4202</td>
<td></td>
</tr>
<tr>
<td><strong>Southeast Michigan Council of Governments</strong></td>
<td>(313) 324-3350</td>
<td>(313) 961-4869</td>
<td><a href="mailto:mangus@semcog.org">mangus@semcog.org</a></td>
</tr>
<tr>
<td>Amy Mangus</td>
<td>(313) 324-3350</td>
<td>(313) 961-4869</td>
<td><a href="mailto:stefanski@semcog.org">stefanski@semcog.org</a></td>
</tr>
<tr>
<td>Susan Stefanski</td>
<td>(313) 961-4266</td>
<td>(313) 961-4869</td>
<td></td>
</tr>
<tr>
<td><strong>Spalding DeDecker Associates</strong></td>
<td>(248) 844-5400</td>
<td>(248) 844-5404</td>
<td><a href="mailto:dlakin@spaldingdedecker.com">dlakin@spaldingdedecker.com</a></td>
</tr>
<tr>
<td>Dave Lakin</td>
<td>(248) 844-5400</td>
<td>(248) 844-5404</td>
<td><a href="mailto:jvantiflin@spaldingdedecker.com">jvantiflin@spaldingdedecker.com</a></td>
</tr>
<tr>
<td>Jim VanTiflin</td>
<td>(248) 844-5400</td>
<td>(248) 844-5404</td>
<td></td>
</tr>
<tr>
<td>Michael Badamo</td>
<td>(248) 844-5400</td>
<td>(248) 844-5404</td>
<td></td>
</tr>
<tr>
<td><strong>St. Clair County Planning Commission</strong></td>
<td>(810) 989-6950</td>
<td>(810) 987-5931</td>
<td><a href="mailto:gdonaldson@stclaircounty.org">gdonaldson@stclaircounty.org</a></td>
</tr>
<tr>
<td>Geoff Donaldson, Environmental Planner</td>
<td>(810) 989-6950</td>
<td>(810) 987-5931</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>Contact</td>
<td>Telephone 1</td>
<td>Telephone 2</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>St. Clair County Planning Commission</strong></td>
<td>Geoff Donaldson, Environmental Planner</td>
<td>(810) 989-6950</td>
<td>(810) 987-5931</td>
</tr>
<tr>
<td><strong>St. Clair Shores</strong></td>
<td>Mary Jane Winkler</td>
<td>(586) 447-3414</td>
<td>(586) 771-8935</td>
</tr>
<tr>
<td></td>
<td>Greg Corless, Information Systems Director</td>
<td>(586) 447-3411</td>
<td>(586) 771-8935</td>
</tr>
<tr>
<td></td>
<td>Curt Dumas, Water/DPW Director</td>
<td>(586) 445-5363</td>
<td>(586) 445-4052</td>
</tr>
<tr>
<td><strong>Tetra Tech – MPS</strong></td>
<td>Matt Rathsack, P.E.</td>
<td>(586) 727-0777</td>
<td>(586) 727-7416</td>
</tr>
<tr>
<td></td>
<td>Kyle Paulson, EIT</td>
<td>(517) 394-7900</td>
<td>(517) 394-0011</td>
</tr>
<tr>
<td></td>
<td>Kellie DuBay</td>
<td>(216) 861-2950</td>
<td>(216) 861-2960</td>
</tr>
<tr>
<td></td>
<td>Dan Christian, P.E.</td>
<td>(517) 394-3091</td>
<td>(517) 394-0011</td>
</tr>
<tr>
<td><strong>United States Army Corps of Engineers</strong></td>
<td>Michael Geiger</td>
<td>(313) 226-6071</td>
<td>(313) 226-7095</td>
</tr>
<tr>
<td><strong>Wayne County Community College</strong></td>
<td>Michael Blair, Director Extension Center Services</td>
<td>(313) 526-2795</td>
<td>(313) 526-2835</td>
</tr>
<tr>
<td><strong>Wayne County Department of Environment</strong></td>
<td>Kelly Cave, Director – Watershed Management Division</td>
<td>(313) 224-8282</td>
<td>(313) 224-7678</td>
</tr>
<tr>
<td></td>
<td>Noel Mullett, Jr.</td>
<td>(734) 326-4486</td>
<td>(734) 326-4421</td>
</tr>
<tr>
<td></td>
<td>Dean Tuomari, Watershed Coordinator</td>
<td>(734) 326-4483</td>
<td>(734) 326-4421</td>
</tr>
</tbody>
</table>

Updated 8/4/06
Public Involvement Summaries
Dissenting Viewpoints
This appendix is provided to allow any of the permittees participating in the plan to document any disagreements or dissenting viewpoints that they have with the contents of the plan.
As of this time, this appendix contains no dissenting viewpoints.